maxon motor control

EPOS P Positioning Controller

Programming Reference

April 2009 Edition

EPOS P MCD EPOS P

Programmable Positioning Controller

Documentation Programming Reference

maxon document 786912-06

1 Table of Contents

8.2 Marker Global Status Register	88
8.1 User Marker Area	87
8 Markers	87
7.3.3 Function Block CAN_SdoWrite	85
7.3.2 Function Block CAN_SdoRead	83
7.3.1 Function Block CAN_Nmt	82
7.3 CANopen DS-301 Function Blocks	82
7.2.13 Function Block MU_SetBitState	81
7.2.12 Function Block MU_GetBitState	80
7.2.11 Function Block MU Selection	79
7.2.10 Function Block MU_SetHomingParameter	75
7.2.0 Function Block MIL GatHomingParameter	74 75
7.2.7 FUNCTION DIOCK IND_GETODJECT	3/ 7/
7.2.0 FUNCTION BIOCK MU_GETDEVICEETFOT	72
7.2.5 Function Block MU_GetDeviceErrorGount	/1
7.2.4 Function Block MU_SetAllDigitalOutputs	70
7.2.3 Function Block MU_GetAnalogInput	69
7.2.2 Function Block MU_GetDigitalInput	67
7.2.1 Function Block MU_GetAllDigitalInputs	65
7.2 Maxon Utility Function Blocks	65
7.1.15 Function Block MC_ReadAxisError	64
7.1.14 Function Block MC_ReadActualCurrent	62
7.1.13 Function Block MC_ReadActualVelocity	60
7.1.12 Function Block MC_ReadActualPosition	58
7.1.11 Function Block MC WriteParameter	56
7.1.10 Function Block MC_ReadBoolParameter	54
7.1.9 Function Block MC ReadParameter	51 52
7.1.7 FUNCTION BIOCK MC_HOME	49 51
7.1.6 Function Block MC_MoveVelocity	46
7.1.5 Function Block MC_MoveRelative	43
7.1.4 Function Block MC_MoveAbsolute	40
7.1.3 Function Block MC_ReadStatus	38
7.1.2 Function Block MC_Reset	37
7.1.1 Function Block MC_Power	36
7.1 Motion Control Function Blocks	36
7 Function Block Description	36
6.3.4.2 Communication via Network Variables	34
6.3.4.1 Communication via Function Blocks	33
6.3.4 Minimal Network Configuration	31
6.3.3.4 Configuration View "Bootup"	31
6.3.3.3 Configuration View "Heartbeat Control"	
6.3.3.2 Tab "Network Variables"	25
6.3.1 Configuration View "Slave"	25
6.3.2.3 Configuration view "Heartbeat Control	24
0.3.2.2 Configuration View "3TNC Master 6.3.2.3 Configuration View Heartheat Control"	ו∠ ≀כ
0.3.2.1 Configuration View "Waster	∪∠ רכ
0.3.2 Master Configuration	20
b.s. UVerview	19
6.3 Network Contiguration	19
6.2.1 Edit Task Properties	17
6.2 Task Properties	17
6.1.1 Edit Resource Properties	15
6.1 Resource Properties	15
6 Project Settings	15
5.8 Debugging Program Code	13
5.7 Compiling and Executing Program Code	13
5.6 Writing Program Code	11
5.5 Creating New Project	10
5.4 Sample Project: HelloWorld	10
5.3 Connection Setup	8
5.2 Licence Key Configuration	8
5.1 Open Programming Tool	7
5 Start Programming	7
4 How to use this guide	6
3 Introduction	6
2 Table of Figures	4
	2

Programming Reference

8.2 Marker Clobal Avia Error Pagiatar	00
0.5 Marker Global Aris Error Register	
8.4 Reserved Marker Area	90
8.5 CANopen Slave Error Register Area	90
9 Process Inputs and Outputs	91
9.1 Process Inputs	91
9.1.1 SINT Process Inputs	91
9.1.2 USINT Process Inputs	
9.1.3 INT Process Inputs	92
9.1.4 UINT Process Inputs	93
9.1.5 DINT Process Inputs	93
9.1.6 UDINT Process Inputs	94
9.2 Process Outputs	94
9.2.1 SINT Process Outputs	94
9.2.2 USINT Process Outputs	
9.2.3 INT Process Outputs	
9.2.4 UINT Process Outputs	
9.2.5 DINT Process Outputs	
9.2.6 UDINT Process Outputs	97
10 Error Handling	98
10.1 Programming Environment Error Codes	98
10.2 Motion Control Function Blocks Error Codes	
11 Example Projects	
11.1 Example «HelloWorld»	100
11.2 Example «SimpleMotionSequence»	101
11.2 Zhangho Componence Quantos	102
11.0 "Dest Hadilee" Hoylan Examples	102
11.4 Application Program Examples	
12 Additional Information	103

2 Table of Figures

Figure 2: Page Navigator Window 7 Figure 3: Clock1312 Programming Window 7 Figure 5: Concection Setup 8 Figure 5: Concection Setup 9 Figure 5: Concection Setup 9 Figure 7: Setul Connection Setup 9 Figure 8: Settings 9 Figure 9: Concection Entry ProxyEpos" 9 Figure 11: Concection Entry ProxyEpos" 9 Figure 12: Create Program File 11 Figure 12: Create Program File 11 Figure 12: Create Program Code implementation 12 Figure 13: Porgram Code implementation 12 Figure 14: Output Window 13 Figure 22: Codd Stat 13 Figure 23: Continue Program Execution 14 Figure 23: Continue Program Execution 14 Figure 23: Continue Program Execution 15 Figure 23: Continue Program Execution 16 Figure 23: Continue Torgram Execution 17 <th>Figure 1: EPOS P documentation hierarchy</th> <th>6</th>	Figure 1: EPOS P documentation hierarchy	6
Figure 3: IEC-61131 Programming Window 7 Figure 5: Connection Setup 8 Figure 6: Edit Connection 9 Figure 6: Edit Connection 9 Figure 7: Select Driver 9 Figure 8: Edit Connection 9 Figure 8: Careat New Project 10 Figure 10: Careat New Project 10 Figure 11: Edit Resource Specifications 11 Figure 11: Edit Resource 11 Figure 12: Careat Program Rie 12 Figure 13: Add to active rasource 11 Figure 14: Task Specifications 12 Figure 15: Congram Code implementation 12 Figure 11: Edit Network Code 13 Figure 21: Cold Start 13 Figure 22: Breakpoint 14 Figure 23: Cond Start 13 Figure 24: Resource-Pane 15 Figure 24: Resource Pane 15 Figure 24: Resource-Pane 16 Figure 24: Calit Task Specification - Network 16 Figure 23: Configuration View Master' 20 Figure 24: Calit Task Specification - Optimization	Figure 2: Page Navigator Window	7
Figure 1: License Dialog 8 Figure 5: Connection Setup 8 Figure 6: Edit Connection 9 Figure 8: Settings 9 Figure 9: Concection Entry ProxyEpos" 9 Figure 10: Create New Project 9 Figure 11: Connection Entry ProxyEpos" 9 Figure 11: Connection Entry ProxyEpos" 9 Figure 11: Contact New Project 9 Figure 11: Contact New Project 9 Figure 11: Contact New Project 9 Figure 12: Create Program File 11 Figure 14: Nack Specifications 12 Figure 15: Origine Code Implementation 12 Figure 16: Output Window 13 Figure 21: Test And Commissioning Window 13 Figure 22: Codd Start 13 Figure 23: Continue Program Execution 14 Figure 24: Resource Pane 15 Figure 25: Resource Specifications window 13 Figure 25: Cleasource Specification - Task Type 17 Figure 25: Cleasource Specification - Task Type 17 Figure 25: Cleasource Specification - Task Type 17	Figure 3: 'IEC-61131 Programming' Window	7
Figure 6: Connection Setup. 8 Figure 6: Edit Connection 9 Figure 8: Connection Entry 'ProxyEpos' 9 Figure 9: Connection Entry 'ProxyEpos' 9 Figure 10: Create New Project. 10 Figure 11: Edit Resource Specifications. 11 Figure 13: Add to active resource. 11 Figure 13: Create Program File 11 Figure 16: Variable Declarations 12 Figure 16: Variable Declarations 12 Figure 17: Create Program Code Implementation 12 Figure 18: Output Window 13 Figure 20: Cold Start 13 Figure 21: Beakpoint 4 14 Figure 22: Breakpoint 4 14 Figure 23: Resource-Pane 15 Figure 24: Resource-Pane 15 Figure 25: Configuration Vew Master' 20 Figure 26: Edit Task Specification - Optimization. 17 Figure 26: Configuration Vew Master'. 21 Figure 27: Configuration Vew Master'. 21 Figure 23: Configuration Vew Master'. 21 Figure 24: Resource-Pane 16 <tr< td=""><td>Figure 4: License Dialog</td><td>8</td></tr<>	Figure 4: License Dialog	8
Figure 6: Edit Connection 9 Figure 8: Settings. 9 Figure 8: Settings. 9 Figure 10: Create New Project. 10 Figure 11: Edit Resource Secolifications. 11 Figure 11: Create New Project. 11 Figure 11: Create New Project. 11 Figure 11: Attack Specifications 11 Figure 11: Attack Specifications 11 Figure 11: Attack Specifications 12 Figure 11: Attack Declaration 12 Figure 12: Create Program File 13 Figure 21: Tost And Commissioning Window 13 Figure 23: Continue Program Execution 14 Figure 23: Continue Program Execution 14 Figure 24: Test And Commissioning Window 15 Figure 25: Resource-Pare 15 Figure 26: Resource-Specification * Nark Type 17 Figure 27: Edit Task Specification * Nark Type 17 Figure 28: Network Configuration Overview 19 Figure 30: Configuration View Master' 20 Figure 31: Configuration View Waster' 21 Figure 32: Network Infos <	Figure 5: Connection Setup	8
Figure 7: Select Driver. 9 Figure 8: Connection Entry 'Prox/Epos'. 9 Figure 9: Connection Entry 'Prox/Epos'. 9 Figure 11: Edit Resource Specifications. 11 Figure 12: Create Program File 11 Figure 13: Add to active resource. 11 Figure 13: Add to active resource. 11 Figure 13: Add to active resource. 11 Figure 16: Variable Declaration. 12 Figure 17: Project Hell/World. 12 Figure 18: Output Window 13 Figure 20: Cold Start 13 Figure 21: Test And Commissioning Window 13 Figure 22: Breakpoint'. 14 Figure 23: Resource Specification rescution. 14 Figure 24: Resource-Pane. 15 Figure 25: Resource Specification - Task Type. 17 Figure 26: Configuration View Master'. 20 Figure 31: Configuration View Master'. 20 Figure 32: Configuration View Master'. 20 Figure 37: Add Network Variables'. 22 Figure 37: Add Network Variables'. 22 Figure 37: Add Network Variable	Figure 6: Edit Connection	9
Figure 8: Settings. 9 Figure 10: Create New Project. 9 Figure 11: Create New Project. 10 Figure 11: Create New Project. 11 Figure 11: Create Program File 11 Figure 11: Create Program File 11 Figure 11: Ask Specifications 11 Figure 15: Project HelloWord. 12 Figure 16: Variable Declaration 12 Figure 17: Program Code Implementation 12 Figure 18: Output Window 13 Figure 21: Test And Commissioning Window 13 Figure 23: Continue Program Execution 14 Figure 23: Continue Program Execution 14 Figure 24: Resource-Pare 15 Figure 25: Resource Specification vindow 15 Figure 26: Clastast Specification - Nark Type 17 Figure 27: Edit Task Specification - Nark Type 17 Figure 26: Configuration Overview 19 Figure 32: Network Configuration Overview 19 Figure 32: Network Infos 22 Figure 32: Configuration View 'SNNC Master' 21 Figure 33: Configuration View 'Network Va	Figure 7: Select Driver	9
Figure 9: Connection Entry 'Prox/Epos' 9 Figure 10: Create New Project 10 Figure 11: Edit Resource Specifications 11 Figure 12: Create Program File 11 Figure 13: Add to active resource 11 Figure 13: Add to active resource 11 Figure 14: Task Specifications 12 Figure 16: Variable Declaration 12 Figure 17: Program Code Implementation 12 Figure 17: Program Code Implementation 13 Figure 20: Cold Start 13 Figure 22: Breakpoint' 14 Figure 22: Breakpoint' 14 Figure 23: Continue Program Execution 14 Figure 24: Resource Pane 15 Figure 25: Resource Specification - Interrupt 18 Figure 28: Configuration View Master' 20 Figure 28: Network Configuration Overview 19 Figure 31: Configuration View Master' 20 Figure 32: Configuration View Waster' 20 Figure 33: Configuration View Waster' 20 Figure 33: Configuration View Waster' 20 Figure 31: Configuration View Wast	Figure 8: Settings	9
Figure 10: Create New Project 10 Figure 11: Cittle Resource Socilications. 11 Figure 11: Cittle Resource Socilications. 11 Figure 11: Allask Specifications 11 Figure 11: Allask Specifications 11 Figure 11: Arask Specifications 12 Figure 11: Arask Specifications 12 Figure 11: Arabie Declaration 12 Figure 19: Download new code 13 Figure 21: Test And Commissioning Window 13 Figure 23: Continue Program Execution 14 Figure 24: Resource Pane 15 Figure 25: Configuration - Optimization 17 Figure 26: Edit Task Specification - Nak Type 17 Figure 28: Edit Task Specification - Nak Type 18 Figure 29: Configuration View Master' 20 Figure 30: Configuration View Waster' 21 Figure 31: Configuration View Waster' 21 Figure 32: Network Kinfos 22 Figure 33: Configuration View Waster' 21 Figure 31: Configuration View Waster' 21 Figure 32: Configuration View Waster' 22 <t< td=""><td>Figure 9: Connection Entry 'ProxyEpos'</td><td>9</td></t<>	Figure 9: Connection Entry 'ProxyEpos'	9
Figure 11: Edit Resource Specifications. 11 Figure 13: Add to active resource 11 Figure 13: Add to active resource 11 Figure 13: Project HelloWorld 12 Figure 14: Task Specifications 12 Figure 17: Project HelloWorld 12 Figure 18: Output Window 13 Figure 20: Cold Start 13 Figure 21: Trest And Commissioning Window 13 Figure 22: Breakpoint 14 Figure 23: Continue Program Execution 14 Figure 24: Breakpoint 14 Figure 25: Resource Specification swindow 15 Figure 26: Continue Program Execution 17 Figure 27: Edit Task Specification - Difimization. 17 Figure 28: It Task Specification or Optimization. 17 Figure 29: Network Configuration View 'Master' 20 Figure 32: Configuration View 'Master' 20 Figure 32: Configuration View 'Master' 20 Figure 32: Configuration View 'Mearbeat Control' 24 Figure 34: Configuration View 'Mearbeat Control' 24 Figure 34: Configuration View 'Mearbeat Control' 24 Figure 34: Configuration View 'Mearbeat Control	Figure 10: Create New Project	.10
Figure 12: Create Program File 11 Figure 13: Add to active resource 11 Figure 13: Add to active resource 11 Figure 15: Project Hello/Vold 12 Figure 16: Variable Declaration 12 Figure 17: Program Code Implementation 12 Figure 19: Download new code 13 Figure 21: Test And Commissioning Window 13 Figure 22: Cold Start 14 Figure 23: Continue Program Execution 14 Figure 26: Edit Task Specifications window 15 Figure 26: Edit Task Specification - Task Type 17 Figure 27: Test And Commissioning Xindow 16 Figure 28: Edit Task Specification - Ontingzition. 17 Figure 28: Edit Task Specification - Ontingzition. 17 Figure 28: Configuration View Master'. 20 Figure 30: Configuration View 'Master'. 20 Figure 31: Configuration View 'Master'. 21 Figure 32: Configuration View 'Master'. 22 Figure 33: Configuration View 'Master'. 23 Figure 37: Add Network Variables 26 Figure 37: Add Network Variables 26	Figure 11: Edit Resource Specifications	.11
Figure 13: Add to active resource. 11 Figure 14: Task Specifications 11 Figure 15: Project HelloVkold. 12 Figure 16: Variable Declaration. 12 Figure 17: Program Code Implementation 12 Figure 17: Program Code Implementation 12 Figure 17: Program Code Implementation 13 Figure 20: Cold Start 13 Figure 21: Task Ad Commissioning' Window 13 Figure 22: Breakpoint 14 Figure 23: Continuer Pogram Execution 14 Figure 24: Besource Specification stark Type 17 Figure 25: Resource Specification - Task Type 17 Figure 27: Edit Task Specification - Optimization. 17 Figure 27: Edit Task Specification - Network Configuration Overview 19 Figure 31: Configuration View 'Mester'. 20 Figure 32: Network Infos 22 Figure 32: Configuration View 'Mester'. 21 Figure 32: Configuration View 'Network Variables' 26 Figure 34: Configuration View 'Network Variables' 26 Figure 34: Configuration View 'Network Variables' 26 Figure 34: Configuration View 'Netwriables' 26	Figure 12: Create Program File	.11
Figure 14: Task Specifications 11 Figure 15: Project HelloWorld 12 Figure 17: Program Code Implementation 12 Figure 19: Download new code 13 Figure 21: Cod Start 13 Figure 21: Cod Start 13 Figure 21: Cod Start 14 Figure 22: Breakpoint 14 Figure 23: Continue Program Execution 14 Figure 24: Resource-Prane 15 Figure 25: Cit Task Specification - Task Type 17 Figure 26: Edit Task Specification - Interrupt 18 Figure 27: Network Configuration Overview 19 Figure 28: Edit Task Specification - Optimization. 17 Figure 29: Network Inofos 20 Figure 31: Configuration View Master' 20 Figure 32: Configuration View Master' 20 Figure 33: Configuration View Network Variables' 26 Figure 34: Configuration View Water 21 Figure 35: Configuration View Network Variables 22 Figure 36: Configuration View Network Variables 26 Figure 36: Configuration View Network Variables 26 Figure 36: Configuration View Network Variables 26 <	Figure 13: Add to active resource	.11
Figure 15: Project HelloWorld. 12 Figure 17: Program Code Implementation 12 Figure 17: Program Code Implementation 12 Figure 18: Output Window 13 Figure 20: Cold Start 13 Figure 21: Test And Commissioning' Window 13 Figure 22: Breakpoint 14 Figure 23: Continue Program Execution 14 Figure 24: Breakpoint 14 Figure 25: Resource Specification swindow 15 Figure 25: Resource Specification - Task Type 17 Figure 26: Cild Task Specification - Task Type 17 Figure 26: Configuration View Master' 20 Figure 28: Configuration View Master' 20 Figure 29: Configuration View 'Master' 20 Figure 36: Configuration View 'Master' 20 Figure 37: Add Network Variable 27 Figure 37: Add Network Variables 26 Figure 37: Configuration View 'Master' 30 Figure 37: Configuration View 'Heartbeat Control' 24 Figure 37: Add Network Variables 26 Figure 37: Configuration View 'Heartbeat Control' 28 Figure 37: Configuration View 'Heartbeat Control'	Figure 14: Task Specifications	.11
Figure 16: Variable Declaration 12 Figure 16: Output Window 12 Figure 19: Download new code 13 Figure 21: Cold Start 13 Figure 22: Cold Start 13 Figure 23: Continue Program Execution 14 Figure 22: Continue Program Execution 14 Figure 23: Continue Program Execution 14 Figure 25: Edit Task Specification - Task Type 17 Figure 26: Edit Task Specification - Task Type 17 Figure 26: Edit Task Specification - Interrupt 18 Figure 27: Metwork Configuration Overview 19 Figure 28: Edit Task Specification - Interrupt 18 Figure 29: Configuration View Master' 20 Figure 30: Configuration View Master' 21 Figure 31: Configuration View Heartbeat Control' 24 Figure 32: Configuration View Heartbeat Control' 24 Figure 33: Configuration View Natwork Variables' 25 Figure 34: Configuration View Heartbeat Control' 24 Figure 37: Add Network Variables 26 Figure 36: Configuration View Heartbeat Control' 30 Figure 37: Add Network Variables 30 Figure 36:	Figure 15: Project HelloWorld	.12
Figure 17: Program Code Implementation. 12 Figure 18: Output Window 13 Figure 20: Cold Start 13 Figure 22: Test And Commissioning' Window 13 Figure 22: Test And Commissioning' Window 14 Figure 22: Breakpoint'. 14 Figure 23: Continue Program Execution. 14 Figure 24: Edit Task Specification - Task Type 17 Figure 27: Edit Task Specification - Optimization. 17 Figure 28: Celt Task Specification - Optimization. 17 Figure 29: Network Configuration Overview. 19 Figure 30: Configuration View Master 20 Figure 32: Configuration View SNC Master 21 Figure 32: Configuration View Heartbeat Control' 24 Figure 33: Configuration View Network Variables 26 Figure 33: Configuration View Network Variables 26 Figure 33: Configuration View Network Variables 29 Figure 34: Configuration View Heartbeat Control' 30 Figure 35: Configuration View Heartbeat Control' 30 Figure 34: Configuration View Network Variables 28 Figure 35: Configuration View Network Variables 30 Figure 30: Configuration View Ne	Figure 16: Variable Declaration	.12
Figure 18: Output Window 13 Figure 19: Downlaad new code 13 Figure 20: Cold Start 13 Figure 21: Test And Commissioning' Window 13 Figure 22: Treak Jonit' 14 Figure 23: Continue Program Execution 14 Figure 25: Edit Task Specification swindow 15 Figure 26: Edit Task Specification - Task Type 17 Figure 26: Edit Task Specification - Interrupt 18 Figure 27: Configuration Overview 19 Figure 31: Configuration Overview 19 Figure 32: Configuration View Master' 20 Figure 33: Configuration View Master' 21 Figure 33: Configuration View Master' 22 Figure 33: Configuration View Slave' 24 Figure 33: Configuration View Slave' 24 Figure 34: Configuration View Variables 26 Figure 34: Configuration View Nateate Control' 24 Figure 34: Configuration View Variables 26 Figure 34: Configuration View Variables 29 Figure 34: Configuration View Variables 29 Figure 34: Configuration View Variables 30 Figure 34: Configuration View Variables	Figure 17: Program Code Implementation	.12
Figure 19: Download new code 13 Figure 20: Cold Start 13 Figure 21: Test And Commissioning' Window 13 Figure 22: Breakpoint' 14 Figure 23: Continue Program Execution 14 Figure 24: Resource-Pane 15 Figure 25: Geli Task Specification - Task Type 17 Figure 27: Edit Task Specification - Optimization 17 Figure 28: Idel Task Specification - Optimization 17 Figure 29: Idel Task Specification - Optimization 17 Figure 29: Idel Task Specification - Netwrup 18 Figure 29: Idel Task Specification - Interrupt 18 Figure 30: Configuration Overview. 19 Figure 31: Configuration View 'StrNC Master'. 20 Figure 32: Network Infos. 22 Figure 34: Configuration View 'StrNC Master'. 24 Figure 35: Configuration View 'Network Variables'. 26 Figure 30: Lock & Unlock PDO's 28 Figure 31: Configuration View 'Network Variables'. 26 Figure 32: Configuration View 'Heartbeat Control' 24 Figure 32: Configuration View 'Network Variables'. 26 Figure 30: Lock & Unlock PDO's 29	Figure 18: Output Window	13
Figure 20: Cold Start 13 Figure 21: Test And Commissioning Window 13 Figure 22: Breakpoint* 14 Figure 23: Continue Program Execution. 14 Figure 24: Resource-Pane. 15 Figure 25: Resource Specifications window. 15 Figure 26: Edit Task Specification - Task Type 17 Figure 26: Edit Task Specification - Interrupt 18 Figure 27: Network Configuration View 'Master'. 20 Figure 30: Configuration View 'Master'. 20 Figure 31: Configuration View 'Master'. 20 Figure 32: Network Infos 22 Figure 33: Configuration View 'Heartbeat Control'. 24 Figure 34: Configuration View 'Network Variables'. 26 Figure 35: Configuration View 'Network Variables'. 26 Figure 36: Configuration View 'Network Variables'. 26 Figure 37: Add Network Variables. 27 Figure 38: Configuration View 'Heartbeat Control'. 24 Figure 39: Lock & Unlock PDO's. 29 Figure 41: Declaration of network variables 29 Figure 41: Declaration of New 'Heartbeat Control". 30 Figure 42: Configuration View 'Heartbeat Control".	Figure 19: Download new code	13
Figure 21: Test And Commissioning' Window 13 Figure 22: Breakpoint' 14 Figure 22: Continue Program Execution. 14 Figure 23: Continue Program Execution. 14 Figure 24: Resource-Pane. 15 Figure 25: Edit Task Specification - Task Type. 17 Figure 26: Edit Task Specification - Optimization. 17 Figure 27: Edit Task Specification - Interupt. 18 Figure 29: Network Configuration Overview. 19 Figure 30: Configuration View 'Master'. 20 Figure 32: Network Infos. 22 Figure 32: Configuration View 'Master'. 21 Figure 32: Configuration View 'Heartbeat Control'. 24 Figure 33: Configuration View 'Heartbeat Control'. 24 Figure 33: Configuration View 'Network Variables'. 26 Figure 33: Configuration View 'Network Variables'. 26 Figure 33: Configuration View 'Network Variables'. 26 Figure 31: Configuration View 'Network Variables'. 26 Figure 42: Configuration View 'Network Variables. 28 Figure 43: Configuration View 'Network Variables. 29 Figure 43: Configuration View 'Bootup'. 30 Figure 43: Co	Figure 20: Cold Start	13
Figure 22: Breakpoint 14 Figure 23: Breakpoint 14 Figure 23: Resource-Pane. 15 Figure 24: Resource-Pane. 15 Figure 25: Resource Specification - Task Type. 17 Figure 26: Edit Task Specification - Optimization. 17 Figure 29: Network Configuration Overview. 19 Figure 29: Network Configuration Overview. 19 Figure 31: Configuration View 'Master'. 20 Figure 32: Configuration View 'Heartbeat Control' 24 Figure 32: Configuration View 'Heartbeat Control' 24 Figure 32: Configuration View 'Network Variables' 26 Figure 33: Configuration View 'Network Variables' 29 Figure 31: Configuration View valiables 29 Figure 32: Configuration View valiables 30 Figure 32: Configuration View Valiables 30 Figure 44: Motion control function block: Configuration of axis number 33 Figure 45: CANopen DS-301 function block: Configuration of node ID 33	Figure 21: 'Test And Commissioning' Window	13
Figure 23: Continue Program Execution. 14 Figure 24: Resource-Pane. 15 Figure 25: Resource Specification - Task Type 17 Figure 26: Edit Task Specification - Optimization. 17 Figure 27: Edit Task Specification - Optimization. 17 Figure 28: Edit Task Specification - Optimization. 17 Figure 29: Network Configuration Overview. 19 Figure 31: Configuration View 'Master'. 20 Figure 32: Configuration View 'Mester'. 20 Figure 32: Configuration View 'Heartbeat Control'. 24 Figure 33: Configuration View 'Heartbeat Control'. 24 Figure 34: Configuration View 'Network Variables'. 25 Figure 35: Configuration View 'Network Variables'. 26 Figure 36: Configuration View 'Network Variables'. 28 Figure 31: Configuration View 'Network Variables. 28 Figure 42: Configuration of network variables. 29 Figure 43: Configuration View 'Bootup'. 30 Figure 43: Configuration View 'Bootup'. 31 Figure 44: Motion control function block: Configuration of axis number 33 Figure 43: Configuration View 'Bootup'. 31 Figure 44: Motion control function block: Con	Figure 21: 'Braknoint'	14
Figure 24: Resource Pane15Figure 25: Resource Specification - Task Type15Figure 25: Edit Task Specification - Dptimization17Figure 26: Edit Task Specification - Interrupt18Figure 27: Edit Task Specification - Interrupt18Figure 28: Network Configuration Overview19Figure 30: Configuration View 'SNC Master'20Figure 31: Configuration View 'SNC Master'21Figure 32: Network Configuration View 'SNC Master'22Figure 33: Cycle Time23Figure 33: Configuration View 'Heartbeat Control'24Figure 34: Configuration View 'Slave'25Figure 35: Configuration View 'Network Variables'26Figure 36: Configuration View 'Network Variables'26Figure 37: Add Network Variable27Figure 38: Edit PDO Links28Figure 39: Lock & Unlock PDO's29Figure 41: Declaration of network variables30Figure 42: Configuration View 'Heartbeat Control'30Figure 43: Configuration View Heartbeat Control'30Figure 44: Motion control function block: Configuration of axis number33Figure 44: Motion control function block: Configuration of axis number33Figure 45: Metwork Variables36Figure 50: MC_Power37Figure 51: MC_Reset37Figure 52: MC_ReadStatus38Figure 54: MC_MoveAbsolute40Figure 54: MC_MoveAbsolute40Figure 54: MC_MoveAbsolute40Figure 54: MC_MoveAbsolute40Figure 54:	Figure 23: Continue Program Execution	14
rigure 25: Resource Specifications window15Figure 25: Edit Task Specification - Task Type17Figure 25: Edit Task Specification - Interrupt18Figure 29: Edit Task Specification - Interrupt18Figure 29: Network Configuration Overview19Figure 31: Configuration View 'SYNC Master'.20Figure 32: Network Infos.22Figure 32: Network Infos.22Figure 32: Configuration View 'Heartbeat Control'.24Figure 35: Configuration View 'Heartbeat Control'.24Figure 35: Configuration View 'Network Variables'.26Figure 36: Configuration View 'Network Variables'.26Figure 37: Add Network Variable27Figure 38: Configuration View 'Network Variables'.29Figure 30: Configuration View 'Network Variables'.29Figure 31: Configuration View 'Heartbeat Control'.30Figure 41: Declaration of network variables30Figure 42: Configuration View 'Heartbeat Control'.30Figure 43: Configuration View 'Heartbeat Control'.30Figure 44: Motion control function block: Configuration of axis number.33Figure 45: CANopen DS-301 function block: Configuration of node ID33Figure 45: CANopen DS-301 function block: Configuration of node ID33Figure 51: MC_Reset.37Figure 51: MC_Reset.37Figure 51: MC_Reset.37Figure 51: MC_Reset.37Figure 54: MC_MoveAbsolute40Figure 54: MC_MoveAbsolute40Figure 54: MC_MoveAbsolute40 <td>Figure 24: Resource-Pane</td> <td>15</td>	Figure 24: Resource-Pane	15
Figure 22: Edit Task Specification - Task Type 17 Figure 27: Edit Task Specification - Optimization 17 Figure 28: Edit Task Specification - Interrupt 18 Figure 29: Network Configuration Overview 19 Figure 30: Configuration View 'Master' 20 Figure 31: Configuration View 'Master' 21 Figure 32: Network Infos 22 Figure 33: Configuration View 'Hearbeat Control' 24 Figure 35: Configuration View 'Hearbeat Control' 24 Figure 36: Configuration View 'Network Variables' 25 Figure 36: Configuration View 'Network Variables' 26 Figure 37: Add Network Variables 27 Figure 38: Edit PDO Links 28 Figure 39: Lock & Unlock PDO's 29 Figure 41: Declaration of network variables 29 Figure 42: Configuration View 'Bootup'' 30 Figure 43: Configuration View 'Bootup'' 30 Figure 44: Motion control function block: Configuration of axis number 33 Figure 47: Input Network Variables 36 Figure 47: Input Network Variables 35 Figure 48: Network Variables 36 Figure 51: MC_ReadLatus 36 <	Figure 25: Resource Specifications window	15
Figure 20: Edit Task Specification - Configuration. 17 Figure 28: Edit Task Specification - Interrupt 18 Figure 29: Network Configuration Overview 19 Figure 30: Configuration View 'Master'. 20 Figure 31: Configuration View 'Master'. 21 Figure 32: Network Infos. 22 Figure 33: Cocie Time. 23 Figure 34: Configuration View 'Heartbeat Control'. 24 Figure 35: Configuration View 'Network Variables'. 26 Figure 37: Add Network Variable 27 Figure 39: Lock & Unlock PDO's 29 Figure 39: Lock & Unlock PDO's 29 Figure 40: Reset PDO's 29 Figure 41: Motion control function block: Configuration of axis number 30 Figure 42: Configuration View "Heartbeat Control" 30 Figure 43: Configuration View "Heartbeat Control" 30 Figure 44: Motion control function block: Configuration of axis number 33 Figure 45: CANopen DS-301 function block: Configuration of node ID 33 Figure 45: Motor Nariables 35 Figure 52: MC_ReadStatus 36 Figure 52: MC_ReadStatus 37 Figure 52: MC_ReadStatus 38	Figure 26: Edit Task Specification - Task Type	17
Figure 21: Lot Task Operification - Interrupt.18Figure 29: Network Configuration Overview19Figure 30: Configuration View 'Master'20Figure 31: Configuration View 'SYNC Master'21Figure 32: Network Infos.22Figure 32: Network Infos.22Figure 33: Cycle Time.23Figure 34: Configuration View 'Heartbeat Control'24Figure 35: Configuration View 'Network Variables'26Figure 36: Configuration View 'Network Variables'26Figure 37: Add Network Variable27Figure 38: Edit PDO Links28Figure 39: Lock & Unlock PDO's29Figure 31: Configuration View 'Network Variables'30Figure 41: Declaration of network variables30Figure 42: Configuration View 'Heartbeat Control'30Figure 42: Configuration View 'Heartbeat Control'30Figure 43: Configuration View 'Heartbeat Control'30Figure 44: Motion control function block: Configuration of axis number33Figure 45: CANopen DS-301 function block: Configuration of axis number33Figure 46: Output Network Variables34Figure 51: MC_ Reast36Figure 52: MC_ ReadStatus38Figure 53: ReadStatus, possible States39Figure 54: MC_ MoveAbsolute40Figure 55: Move Absolute Sequence41Figure 54: MC_ MoveRelative43Figure 55: Move Relative Sequence44Figure 55: Move Relative Sequence47Figure 66: MC_ MoveRelative46Figure 65:	Figure 27: Edit Task Specification - Task Type	17
Figure 20: Network Configuration Overview 19 Figure 30: Configuration View 'SYNC Master'. 20 Figure 31: Configuration View 'SYNC Master'. 21 Figure 32: Network Infos 22 Figure 33: Cycle Time. 23 Figure 33: Configuration View 'Heartbeat Control'. 24 Figure 35: Configuration View 'Network Variables'. 26 Figure 35: Configuration View 'Network Variables'. 26 Figure 37: Add Network Variable 27 Figure 38: Edit PDO Links 28 Figure 39: Lock & Unlock PDO's 29 Figure 40: Reset PDO's 29 Figure 41: Declaration of network variables 30 Figure 42: Configuration View "Bootup" 31 Figure 43: Configuration View "Bootup" 31 Figure 44: Motion control function block: Configuration of axis number 33 Figure 45: CANopen DS-301 function block: Configuration of node ID 33 Figure 46: Network Variables 35 Figure 51: MC_ReadStatus 36 Figure 52: MC_Power 36 Figure 52: MC_Power 36 Figure 52: MC_Power 36 Figure 52: MC_Power 36	Figure 27. Eur rask opecification - optimization	10
Figure 25. Network Comiguration View Master 20 Figure 31: Configuration View Vaster 21 Figure 32: Network Infos. 22 Figure 32: Cycle Time 23 Figure 33: Cycle Time 23 Figure 35: Configuration View Velate Control' 24 Figure 35: Configuration View Velwork Variables' 26 Figure 36: Configuration View Velwork Variables' 26 Figure 36: Configuration View Velwork Variables' 26 Figure 36: Lock & Unlock PDO's 29 Figure 41: Declaration of network variables 29 Figure 42: Configuration View "Heartbeat Control" 30 Figure 43: Configuration View "Heartbeat Control" 30 Figure 43: Configuration of network variables 30 Figure 43: Configuration View "Heartbeat Control" 30 Figure 43: Configuration block: Configuration of axis number 33 Figure 43: Control function block: Configuration of node ID 33 Figure 47: Input Network Variables 35 Figure 51: MC_ReadStatus 36 Figure 52: MC_ReadStatus 36 Figure 52: MC_ReadStatus 38 Figure 55: Move Absolute Sequence 41	Figure 20. Edit Task Specification - Interrupt	10
Figure 31: Configuration View 'SYNC Master'.21Figure 32: Network Infos.22Figure 32: Network Infos.22Figure 33: Configuration View 'Heartbeat Control'.24Figure 35: Configuration View 'Network Variables'.25Figure 36: Configuration View 'Network Variables'.26Figure 37: Add Network Variable.27Figure 38: Edit PDO Links.28Figure 39: Lock & Unlock PDO's.29Figure 40: Reset PDO's.29Figure 41: Declaration of network variables30Figure 42: Configuration View "Heartbeat Control".30Figure 43: Configuration View "Heartbeat Control".30Figure 44: Motion control function block: Configuration of node ID.33Figure 45: CANopen DS-301 function block: Configuration of node ID.33Figure 47: Input Network Variables.35Figure 47: Input Network Variables.35Figure 50: MC_Power36Figure 51: MC_Reset.37Figure 51: MC_Reset.37Figure 51: MC_Reset.39Figure 51: MC_Reset.39Figure 57: Move Absolute Sequence.41Figure 57: Move Velocity Sequence.41Figure 57: Move Velocity Sequence.41Figure 57: Move Relative Sequence.47Figure 57: Move Relative Sequence.47Figure 57: Move Relative Sequence.41Figure 57: Move Relative Sequence.41Figure 67: MC_ReadStatus36Figure 61: MC_ReadParameter.52Figure 62: MC_ReadParameter.52	Figure 29: Configuration View (Master)	20
Figure 31: Network Infos. 21 Figure 32: Network Infos. 22 Figure 33: Cycle Time. 23 Figure 33: Configuration View 'Heartbeat Control' 24 Figure 35: Configuration View 'Slave'. 25 Figure 36: Configuration View 'Network Variables'. 26 Figure 37: Add Network Variable 27 Figure 38: Edit PDO Links. 28 Figure 39: Lock & Unlock PDO's 29 Figure 41: Declaration of network variables 30 Figure 42: Configuration View "Heartbeat Control" 30 Figure 43: Configuration View "Heartbeat Control" 30 Figure 43: Configuration View "Bootup" 31 Figure 43: Configuration View "Bootup" 33 Figure 45: CANopen DS-301 function block: Configuration of node ID 33 Figure 45: Network Variables 35 Figure 51: Mc_Reset 35 Figure 51: MC_Reset 37 Figure 52: MC_ReadStatus 38 Figure 53: Move Absolute Sequence 41 Figure 54: MC_MoveHelative 43 Figure 55: Move Absolute Sequence 47 Figure 61: MC_MoveHelative 43 Figure 63	Figure 30. Configuration View Master	.20
Figure 32. Network Time.22Figure 33: Cycle Time.23Figure 34: Configuration View 'Heartbeat Control'.24Figure 35: Configuration View Vetwork Variables'.26Figure 37: Add Network Variable27Figure 38: Edit PDO Links28Figure 38: Edit PDO's.29Figure 40: Reset PDO's.29Figure 41: Declaration of network variables30Figure 42: Configuration View "Heartbeat Control".30Figure 42: Configuration View "Heartbeat Control".30Figure 42: Configuration View "Bootup".31Figure 43: Configuration View Bootup".31Figure 44: Motion control function block: Configuration of axis number33Figure 45: CANopen DS-301 function block: Configuration of node ID.33Figure 47: Input Network Variables35Figure 47: Input Network Variables35Figure 51: MC_Reset.37Figure 52: MC_ReadStatus38Figure 52: MC_ReadStatus38Figure 52: Moc_MoveAbsolute40Figure 57: Move Absolute Sequence41Figure 57: Move Relative Sequence44Figure 57: Move Velocity Sequence44Figure 67: Move Velocity Sequence47Figure 61: MC_Stop.51Figure 62: MC_ReadParameter.52Figure 64: MC_WriteParameter52Figure 64: MC_WriteParameter56Figure 64: MC_ReadActualPosition58	Figure 31. Configuration view 31 NO Master	.21
Figure 34: Configuration View 'Hearbeat Control'24Figure 35: Configuration View 'Slave'25Figure 35: Configuration View 'Network Variables'26Figure 37: Add Network Variable27Figure 38: Edit PDO Links28Figure 39: Lock & Unlock PDO's29Figure 41: Declaration of network variables30Figure 42: Configuration View 'Hearbeat Control"30Figure 43: Configuration View 'Bootup"31Figure 43: Configuration View 'Bootup"31Figure 44: Configuration View 'Bootup"31Figure 45: CANopen DS-301 function block: Configuration of axis number33Figure 45: CANopen DS-301 function block: Configuration of node ID33Figure 47: Input Network Variables35Figure 49: Project Browser in Programming Tool.35Figure 51: MC_Reset.37Figure 52: MC_ReadStatus38Figure 53: ReadStatus, possible States39Figure 53: Move Absolute40Figure 53: Move Relative Sequence41Figure 54: MC_MoveRelative43Figure 55: Move Relative Sequence44Figure 56: MC_NoveVelocity46Figure 51: MC_ReadParameter52Figure 61: MC_Stop.51Figure 61: MC_ReadActualPosition58Figure 61: MC_ReadActualPosition58Figure 61: MC_ReadActualPosition58	Figure 32. Network miles	.22
Figure 33: Configuration View Rearbear Control	Figure 33. Configuration View (Heartheat Control)	.23
Figure 36: Configuration View Stetwork Variables'.26Figure 37: Add Network Variable27Figure 38: Edit PDO Links.28Figure 39: Lock & Unlock PDO's29Figure 40: Reset PDO's29Figure 41: Declaration of network variables30Figure 42: Configuration View "Heartbeat Control"30Figure 43: Configuration View "Bootup"31Figure 44: Motion control function block: Configuration of network variables33Figure 45: CANopen DS-301 function block: Configuration of node ID33Figure 46: Output Network Variables34Figure 47: Input Network Variables35Figure 48: Network Variables35Figure 50: MC_Power36Figure 51: MC_Reset37Figure 52: MC_ReadStatus38Figure 53: ReadStatus, possible States39Figure 56: MC_MoveRelative40Figure 56: MC_MoveRelative41Figure 56: MC_MoveRelative43Figure 56: MC_MoveRelative47Figure 50: MC_ReadParameter52Figure 61: MC_Stop.51Figure 62: MC_ReadParameter52Figure 61: MC_Stop.51Figure 62: MC_ReadParameter52Figure 64: MC_WriteParameter56Figure 64: MC_WriteParameter56Figure 64: MC_WriteParameter56Figure 64: MC_WriteParameter56Figure 64: MC_WriteParameter56Figure 64: MC_WriteParameter56Figure 64: MC_KriteParameter56Figure 64: MC_WriteParamet	Figure 34. Configuration View Fied (Deal Control	.24
Figure 35: Conlightation view Network Variables	Figure 33. Configuration view Stave	.20
Figure 37. Add Network Variable	Figure 30. Configuration view Network variables	.20
Figure 30: Lock & Unlock PDO's29Figure 31: Lock & Unlock PDO's29Figure 40: Reset PDO's29Figure 41: Declaration of network variables30Figure 42: Configuration View "Heartbeat Control"30Figure 43: Configuration View "Bootup"31Figure 44: Motion control function block: Configuration of axis number33Figure 45: CANopen DS-301 function block: Configuration of node ID33Figure 46: Output Network Variables34Figure 47: Input Network Variables35Figure 48: Network Variable File35Figure 50: MC_Power36Figure 51: MC_Reset37Figure 52: MC_ReadStatus38Figure 54: MC_MoveAbsolute40Figure 55: Move Absolute Sequence41Figure 55: Move Relative Sequence41Figure 58: MC_MoveVelocity46Figure 59: Move Velocity46Figure 60: MC_Home49Figure 61: MC_Stop51Figure 62: MC_MoveRelative43Figure 63: MC_Home49Figure 64: MC_WriteParameter52Figure 64: MC_WriteParameter54Figure 63: MC_ReadBoolParameter56Figure 64: MC_WriteParameter56Figure 63: MC_ReadActualPosition58	Figure 37. Add Network Variable	.27
Figure 39. Lock & Unlock PDO's	Figure 36. Eult PDO Links	.20
Figure 40. Reset PDO's29Figure 41. Declaration of network variables	Figure 39. Lock & Uniock PDUS	.29
Figure 41: Declaration of network variables	Figure 40. Reset PDOS	.29
Figure 42: Configuration View "Beotup"	Figure 41: Declaration of network variables	.30
Figure 43: Configuration view Bootup31Figure 44: Motion control function block: Configuration of axis number33Figure 45: CANopen DS-301 function block: Configuration of node ID33Figure 46: Output Network Variables34Figure 47: Input Network Variables35Figure 48: Network Variable File35Figure 49: Project Browser in Programming Tool35Figure 50: MC_Power36Figure 51: MC_Reset37Figure 52: MC_ReadStatus38Figure 53: ReadStatus, possible States39Figure 54: MC_MoveAbsolute40Figure 55: Move Absolute Sequence41Figure 56: MC_MoveRelative43Figure 58: MC_MoveVelocity46Figure 59: Move Velocity Sequence47Figure 61: MC_Stop51Figure 62: MC_ReadParameter52Figure 63: MC_ReadBoolParameter52Figure 64: MC_WriteParameter52Figure 64: MC_WriteParameter56Figure 65: MC_ReadActualPosition58	Figure 42: Configuration View "Heartbeat Control"	.30
Figure 44: Motion control function block: Configuration of axis number	Figure 43: Configuration view Boolup	.31
Figure 45: CANopen DS-301 Function block: Configuration of node ID	Figure 44: Motion control function block: Configuration of axis number	.33
Figure 46: Output Network Variables.34Figure 47: Input Network Variables.35Figure 48: Network Variable File.35Figure 49: Project Browser in Programming Tool.35Figure 50: MC_Power.36Figure 51: MC_Reset.37Figure 52: MC_ReadStatus.38Figure 53: ReadStatus, possible States.39Figure 55: Move Absolute.40Figure 55: Move Absolute Sequence.41Figure 56: MC_MoveRelative.43Figure 57: Move Relative Sequence.44Figure 58: MC_MoveVelocity.46Figure 59: Move Velocity Sequence.47Figure 61: MC_Stop.51Figure 62: MC_ReadParameter.52Figure 63: MC_ReadBoolParameter.54Figure 64: MC_WriteParameter.56Figure 65: MC_ReadActualPosition.58	Figure 45: CANopen DS-301 function block: Configuration of node ID	.33
Figure 47: input Network Variables35Figure 48: Network Variable File35Figure 49: Project Browser in Programming Tool35Figure 50: MC_Power36Figure 51: MC_Reset37Figure 52: MC_ReadStatus38Figure 53: ReadStatus, possible States39Figure 54: MC_MoveAbsolute40Figure 55: Move Absolute Sequence41Figure 56: MC_MoveRelative Sequence43Figure 57: Move Relative Sequence44Figure 58: MC_MoveVelocity46Figure 60: MC_Home49Figure 61: MC_Stop51Figure 62: MC_ReadParameter52Figure 63: MC_ReadBoolParameter52Figure 64: MC_WriteParameter56Figure 65: MC_ReadActualPosition58	Figure 46: Output Network Variables	.34
Figure 48: Network Variable File.35Figure 49: Project Browser in Programming Tool.35Figure 50: MC_Power.36Figure 51: MC_Reset.37Figure 52: MC_ReadStatus38Figure 53: ReadStatus, possible States39Figure 54: MC_MoveAbsolute40Figure 55: Move Absolute Sequence.41Figure 56: MC_MoveRelative43Figure 57: Move Relative Sequence.44Figure 58: MC_MoveVelocity46Figure 60: MC_Home49Figure 61: MC_Stop.51Figure 62: MC_ReadBoolParameter.52Figure 63: MC_ReadBoolParameter.54Figure 64: MC_WriteParameter.56Figure 65: MC_ReadActualPosition.58	Figure 47: Input Network Variables	.35
Figure 49: Project Browser in Programming 1001.35Figure 50: MC_Power36Figure 51: MC_Reset37Figure 52: MC_ReadStatus38Figure 53: ReadStatus, possible States39Figure 54: MC_MoveAbsolute40Figure 55: Move Absolute Sequence.41Figure 56: MC_MoveRelative43Figure 57: Move Relative Sequence.44Figure 58: MC_MoveVelocity46Figure 59: Move Velocity Sequence.47Figure 60: MC_Home49Figure 61: MC_Stop.51Figure 63: MC_ReadParameter52Figure 63: MC_ReadBoolParameter54Figure 64: MC_WriteParameter56Figure 65: MC_ReadActualPosition58	Figure 48: Network Variable File.	.35
Figure 50: MIC_Power.36Figure 51: MC_Reset.37Figure 52: MC_ReadStatus38Figure 53: ReadStatus, possible States39Figure 54: MC_MoveAbsolute40Figure 55: Move Absolute Sequence41Figure 56: MC_MoveRelative43Figure 57: Move Relative Sequence44Figure 58: MC_MoveVelocity46Figure 59: Move Velocity Sequence47Figure 60: MC_Home49Figure 61: MC_Stop51Figure 62: MC_ReadParameter52Figure 63: MC_ReadBoolParameter54Figure 64: MC_WriteParameter56Figure 65: MC_ReadActualPosition58	Figure 49: Project Browser in Programming 1001	.35
Figure 51: MC_Reset.37Figure 52: MC_ReadStatus38Figure 53: ReadStatus, possible States39Figure 54: MC_MoveAbsolute40Figure 55: Move Absolute Sequence41Figure 56: MC_MoveRelative43Figure 57: Move Relative Sequence44Figure 58: MC_MoveVelocity46Figure 59: Move Velocity Sequence47Figure 60: MC_Home49Figure 61: MC_Stop51Figure 62: MC_ReadParameter52Figure 63: MC_ReadBoolParameter54Figure 64: MC_WriteParameter56Figure 65: MC_ReadActualPosition58		.36
Figure 52: MC_ReadStatus38Figure 53: ReadStatus, possible States39Figure 54: MC_MoveAbsolute40Figure 55: Move Absolute Sequence41Figure 56: MC_MoveRelative43Figure 57: Move Relative Sequence44Figure 58: MC_MoveVelocity46Figure 59: Move Velocity Sequence47Figure 60: MC_Home49Figure 61: MC_Stop51Figure 62: MC_ReadParameter52Figure 63: MC_ReadBoolParameter54Figure 64: MC_WriteParameter56Figure 65: MC_ReadActualPosition58	Figure 51: MC_Reset	.37
Figure 53: HeadStatus, possible States39Figure 54: MC_MoveAbsolute40Figure 55: Move Absolute Sequence41Figure 56: MC_MoveRelative43Figure 57: Move Relative Sequence44Figure 58: MC_MoveVelocity46Figure 59: Move Velocity Sequence47Figure 60: MC_Home49Figure 61: MC_Stop51Figure 62: MC_ReadParameter52Figure 63: MC_ReadBoolParameter54Figure 64: MC_WriteParameter56Figure 65: MC_ReadActualPosition58	Figure 52: MC_ReadStatus	.38
Figure 54: MC_MoveAbsolute40Figure 55: Move Absolute Sequence41Figure 56: MC_MoveRelative43Figure 57: Move Relative Sequence44Figure 58: MC_MoveVelocity46Figure 59: Move Velocity Sequence47Figure 60: MC_Home49Figure 61: MC_Stop51Figure 62: MC_ReadParameter52Figure 63: MC_ReadBoolParameter54Figure 64: MC_WriteParameter56Figure 65: MC_ReadActualPosition58	Figure 53: ReadStatus, possible States	.39
Figure 55: Move Absolute Sequence.41Figure 56: MC_MoveRelative43Figure 57: Move Relative Sequence.44Figure 58: MC_MoveVelocity46Figure 59: Move Velocity Sequence.47Figure 60: MC_Home49Figure 61: MC_Stop.51Figure 62: MC_ReadParameter.52Figure 63: MC_ReadBoolParameter.54Figure 64: MC_WriteParameter.56Figure 65: MC_ReadActualPosition.58	Figure 54: MC_MoveAbsolute	.40
Figure 56: MC_MoveHelative43Figure 57: Move Relative Sequence44Figure 58: MC_MoveVelocity46Figure 59: Move Velocity Sequence47Figure 60: MC_Home49Figure 61: MC_Stop51Figure 62: MC_ReadParameter52Figure 63: MC_ReadBoolParameter54Figure 64: MC_WriteParameter56Figure 65: MC_ReadActualPosition58	Figure 55: Move Absolute Sequence	.41
Figure 57: Move Relative Sequence44Figure 58: MC_MoveVelocity46Figure 59: Move Velocity Sequence47Figure 60: MC_Home49Figure 61: MC_Stop51Figure 62: MC_ReadParameter52Figure 63: MC_ReadBoolParameter54Figure 64: MC_WriteParameter56Figure 65: MC_ReadActualPosition58	Figure 56: MC_MoveRelative	.43
Figure 58: MC_MoveVelocity46Figure 59: Move Velocity Sequence47Figure 60: MC_Home49Figure 61: MC_Stop51Figure 62: MC_ReadParameter52Figure 63: MC_ReadBoolParameter54Figure 64: MC_WriteParameter56Figure 65: MC_ReadActualPosition58	Figure 57: Move Relative Sequence	.44
Figure 59: Move Velocity Sequence 47 Figure 60: MC_Home 49 Figure 61: MC_Stop 51 Figure 62: MC_ReadParameter 52 Figure 63: MC_ReadBoolParameter 54 Figure 64: MC_WriteParameter 56 Figure 65: MC_ReadActualPosition 58	Figure 58: MC_MoveVelocity	.46
Figure 60: MC_Home49Figure 61: MC_Stop51Figure 62: MC_ReadParameter52Figure 63: MC_ReadBoolParameter54Figure 64: MC_WriteParameter56Figure 65: MC_ReadActualPosition58	Figure 59: Move Velocity Sequence	.47
Figure 61: MC_Stop	Figure 60: MC_Home	.49
Figure 62: MC_ReadParameter. .52 Figure 63: MC_ReadBoolParameter. .54 Figure 64: MC_WriteParameter. .56 Figure 65: MC_ReadActualPosition. .58	Figure 61: MC_Stop	.51
Figure 63: MC_ReadBoolParameter	Figure 62: MC_ReadParameter	.52
Figure 64: MC_WriteParameter	Figure 63: MC_ReadBoolParameter	.54
Figure 65: MC_ReadActualPosition58	Figure 64: MC_WriteParameter	.56
	Figure 65: MC_ReadActualPosition	.58

April 2009 Edition / document number 786912-06 / subject to change

	Program	iming	Reference
--	---------	-------	-----------

Figure 66: MC_ReadActualVelocity	60
Figure 67: MC_ReadActualCurrent	62
Figure 68: MC_ReadAxisError	64
Figure 69: MU_GetAllDigitalInputs	65
Figure 70: MU_GetDigitalInput	67
Figure 71: MU_GetAnalogInput	69
Figure 72: MU_SetAllDigitalOutputs	70
Figure 73: MU_GetDeviceErrorCount	71
Figure 74: MU_GetDeviceError	72
Figure 75: MU_GetObject	73
Figure 76: MU_SetObject	74
Figure 77: MU_GetHomingParameter	75
Figure 78: MU_SetHomingParameter	77
Figure 79: MU_Selection	79
Figure 80: MU_GetBitState	80
Figure 81: MU_SetBitState	81
Figure 82: CAN_Nmt	82
Figure 83: CAN_SdoRead	
Figure 84: CAN_SdoWrite	
Figure 85: Example 'HelloWorld'	
Figure 86: Example 'SimpleMotionSequence'	

3 Introduction

This documentation 'Programming Reference' provides the information about programming the EPOS P 24/5 and the MCD EPOS P 60 W positioning controller. On the basis of an example it describes the standard procedure of writing and debugging an IEC-61131 program. Additionally the motion control function blocks are described.

Setup

The latest edition of this "Programming Reference", additional documentation and software to the EPOS P positioning controller may also be found on the internet in <u>www.maxonmotor.com</u> category <Service & Downloads>.

4 How to use this guide

Firmware Specificaton

Figure 1: EPOS P documentation hierarchy

5 Start Programming

5.1 Open Programming Tool

Use the 'EPOS Studio' and make sure a project (*.pjm), containing an EPOS P or an MCD EPOS P device, is loaded. This devices allows you to open the programming tool.

a) Click the page 'Tools' in the page navigator window.

Navigation $\Psi imes$	Navigation $ au imes$
Tools	Tools
Device Selection	Device Selection
EPDS P [Node 1]	MCD EPOS P [Node 1]
🖃 📉 Tools	🖃 📉 Tools
Object Dictionary	Dbject Dictionary
IEC-61131 Programming	IEC-61131 Programming
Network Configuration	🟦 Network Configuration
Workspace	Workspace
Communication	
Wizards	Wizards
Tools	Tools
*	» *

Figure 2: Page Navigator Window

- b) Select the EPOS P or MCD EPOS P device in the device selection combo box.
- c) Double click the tool 'IEC-61131 Programming'. A view containing a list of sample projects is opening. This view can be used as a control centre to open projects and to control the program state.

Sample Projects			
Name HelloWolld ID-Mode SimpleMotionSequence	Path CL. L. L. Sampler/Helto/World/Helto/World/VAR CL. LEPOS Studio/Sampler/ID.Mode/ID.Mode/VAR CL. L. L. L. L. SimpleMotionSequence.VAR	Open Programming Tool Open Sample Project Browse Project	
Program Control	Warm Start Hot Start Sco Prog	up Behaviour gram not Started at Bootup	Bootup Behaviour Program not Started at Bootup Program Vant Started at Bootup Program Vant Start at Bootup Program Wart Start at Bootup

Figure 3: 'IEC-61131 Programming' Window

Project

Program Control

- Cold Start	Start the program initializing the variables to their default values
- Warm Start	Restart the program at the beginning and restore the values
- Hot Start	Restart the program at the place where the program was stopped and restore the values
- Stop	Stop the program

Bootup Behaviour

The bootup behaviour of a downloaded program after a reset can be pre-selected.

d) Click the button 'Open Programming Tool' to open the external tool 'OpenPCS'.

5.2 Licence Key Configuration

EPOS P Positioning Controller

In order to be able to use the OpenPCS programming tool a valid licence key has to be configured. Open the Licence Dialog to check if a valid licence is available.

- a) Open the menu 'Extras' and the submenu 'Tools' to select the menu Item 'Licence'.
- b) If already a valid license is registered, skip the next step.
- c) If no license is registered enter a valid serial number and a licence code. The license code is delivered together with the EPOS Studio in the 'ReadMe.txt' file.

🔁 infoteam	OpenPCS Licences		×
	Name	Company	
User	Hans Muster	maxon motor ag]
Licences—	Serial	Code	
Licence			1
		Info OK	

Figure 4: License Dialog

Remark

If the licence code is out of date, download the latest EPOS Studio from the internet: <u>www.maxonmotor.com</u>, category <Service & Downloads>

5.3 Connection Setup

Configure a connection to establish an online connection to the EPOS P device. This connection configuration is used for downloading, debugging and controlling the program.

- a) Open the menu 'PLC' and select the menu item 'Connections...'
- b) If a connection entry 'ProxyEpos' is available click the button 'Edit' and continue with step 'f'.
- c) If no connection entry 'ProxyEpos' is available click the button 'New' to add a new connection.

ailable Connections				
Name Simulation	Driver IPC	Settings SmartSim.exe single	Code-Repository Path C:\PROGRAMME\INFOTE	New Edit Remove
(Þ	Close

Figure 5: Connection Setup

d) Enter the connection name 'ProxyEpos' and add comment line.

dit Connection		X
Connection Name Brown Frod		
Driver	Select	Settings
Comment Parallel communication of OpenPl	CS and EPOS Studio	<u> </u>
		_
	OK	Cancel

Figure 6: Edit Connection

e) Press the 'Select' button to choose a communication driver. Select the driver 'ProxyEpos'. This driver allows a parallel communication of the EPOS Studio and the programming tool 'OpenPCS.

Select Driver	×
- Available Drivers	
	Name ProxyEpos
RS232	Version 1.0.0.1
	Filepath C:\EigeneDaten\PCSoftwareEntwicklung\PadtProxyEs
IPC	CLSID {EB301206-0592-01D3-B9DD-00902710FBBD}
	ID-Manuf ID 1-592
ProxyEpos	Description ProxyEpos-Driver 2006 by maxon motor ag Brünigstrasse 220, CH-6072 Sachseln
1	OK Cancel

Figure 7: Select Driver

 f) Click the button 'Settings' to select the correct RS-232 port and baudrate. The default baudrate is 115200 bps.

Sel	ttings		2	
	Port Baudrate	COM1 115200	•	
		<u>D</u> K <u>C</u> ancel		

Figure 8: Settings

g) Close the dialogue 'Settings' and the dialogue 'Edit Connection'. The following connection entry should be available now.

Name	Driver	Settings	Code-Repository Path	New
ProxyEpos	ProxyEpos	COM1;115200;5000	C:\MYDIRECTORY\HELLI	
Simulation	IPC	SmartSim.exe single	D:\OPENPCS4\SAMPLES	Edit
				Remove

Figure 9: Connection Entry 'ProxyEpos'

5.4 Sample Project: HelloWorld

The following chapters explain the standard procedure writing a program. This procedure is documented considering an example.

This example is a very simple program without any motion control features. The intention of this program is only to show the handling of the programming tool. The program is counting up and downward. Reaching the maximum value the text 'HelloWorld' is written to the variable 'Text'.

For an example using motion control functionality have a look at the chapter Example Projects.

PROGRAM Counter

VAR UpCounting : BOOL := TRUE; Count : UINT := 0; CountMax : UINT := 300; Text : STRING; END VAR (*Update UpCounting*) IF (Count = 0) THEN UpCounting := TRUE; Text := ``; END IF; IF (Count >= CountMax) THEN UpCounting := FALSE; Text := 'HelloWord'; END IF; (*Do Counting*) IF (UpCounting) THEN Count := Count + 1; ELSE Count := Count -1; END IF; END PROGRAM

5.5 Creating New Project

- a) Open the menu 'File' and the submenu 'Projects' and select the menu item 'New'.
- b) Select the file type 'maxon motor ag' and the template 'EPOS P Project' or 'MCD EPOS P Project'.
- c) Enter the project name 'HelloWorld' and browse the location to store the new project.

reate a new fi	ile					×
File Type		Template				
🔡 infotea	m Software Gml	Name		Description		
maxon 📆	motor ag	EPOS P Project MCD EPOS P Pro	oject	Project for t Project for t	arget 'EPOS P' arget 'EPOS P'	
Project for targe	et 'EPOS P'					
Name	HelloWold					
Location	C:\MyDirecto	ry.				
			OK	(Cano	el

Figure 10: Create New Project

d) Click okay and a new project is created. This project contains a resource item containing a configuration for the hardware module 'maxon motor EPOS P' and a network connection 'ProxyEpos'. The resource specification can be checked by clicking the menu item 'Resource Properties' in the menu 'PLC'.

Edit Resource Specifications - max	kon motor EPOS P 24/5 🛛 🔀
Name Resource	
Options Enable Upload Generate Mapfile Optimization size only	Hardware Module maxon motor EPOS P 24/5 Network Connection ProxyEpos OK Cancel

Figure 11: Edit Resource Specifications

5.6 Writing Program Code

a) As a first step you have to add a new program to the project. Click the menu 'File' and the menu item 'New' to open the dialogue 'Create a new file'.

Create a new file			×
File Type	Template		
POU Program Procisions Prunctions Protocols Projects Projects Projects	lock ST ST Program IL IL Program	SFC Program (IL)	FBD Program FBD Program FBD Program (8 Columns)
Program in 'Structured	Text'		
Name Cou	nter		
Location C:W	lyDirectory\HelloWorld\		
		ОК	Cancel

Figure 12: Create Program File

Select the file type 'Program' in the directory POU (Program Organisation Unit). Choose the preferred programming language for your program. Select for this example the programming language 'Structured Text'. Enter the name 'Counter' and close the dialogue with 'OK'.

b) The message dialogue is opened and you are asked whether you want to add the program item 'Counter' to the active resource or not. Answer this question with 'Yes'.

Figure 13: Add to active resource

c) Do the configuration of the program 'Counter'. Open the tab 'Resources', select the task item 'Counter' and open the properties via the context menu. Select the task type 'Timer' and set the Time to 10 ms.

Edit Task Sp	ecifications			X
Program Nam	ne		Task Type	
Counter			Timer	•
Options			Optimization	
Priority		1 +	resource defaults	•
Time [ms]		10		
Interrupt	CYCLIC	7		
			ОК	Cancel

Figure 14: Task Specifications

d) Now you are ready to start programming. Open the program item 'Counter.ST'.

Figure 15: Project HelloWorld

e) Enter the variable declaration

	VAR_EXTERNAL	
	END_VAR	
	VAR_GLOBAL	
	END_VAR	
	VAR	
	UpCounting : BOOL	:= TRUE;
	Count : UINT	:= 0;
	CountMax : UINT	:= 300;
	Text : STRIN	NG;
	END_VAR	
•		

Figure 16: Variable Declaration

f) Enter the program code

Figure 17: Program Code Implementation

g) To verify the correctness of the implementation execute an syntax check. Click the menu 'File' and select the menu item 'Check Syntax'.

5.7 Compiling and Executing Program Code

a) After code implementation the program has to be compiled. Click the menu 'PLC' and select the menu item 'Build Active Resource'. The following logging output should appear in the output window.

_		
×	C:\Programme\infoteam Software\OpenPCS2006\\itmake.exe -m "C:\MyDirectory\HelloWorld\\$ENV\$\Resource\Resource.MAK - Building resource C:\MyDirectory\HelloWorld\\$ENV\$\Resource\Resource.MAK.	
	Executing Pre-Build-Steps:	
	Creating dependency list(s):	ł
	C:\MyDirectory\HelloWorld\Counter.POE	
	Compiling	
	Tables	
		l
	U error(s), U warning(s) - C:\MYDIRECTORY\HELLOWORLD\\$GEN\$\Resource\Resource.PCD.	l
	Executing Post-Build-Steps:	
	Total:	
	0 error(s) 0 warning(s)	l
ž		ĺ
ŝ		l

Figure 18: Output Window

b) In order to download the program code, an online connection has to be established. Click the menu 'PLC' and select the menu item 'Online'. If a new code is detected, you will be asked if you want to download the current resource. Click 'Yes' in order to update the program on the EPOS P.

OpenPCS Online-Server 32				
?	The Resource on the PLC is not up to date. Would you like to download the current Resource?			
	<u>la</u> <u>N</u> ein			

Figure 19: Download new code

c) Start the downloaded code by clicking the menu 'PLC' and selecting the menu item 'Cold Start'.

	Coldstart			
	<u>W</u> armstart			
	<u>H</u> otstart			
	STOP			
	Erase			
Fiau	ure 20: Cold Start			

5.8 Debugging Program Code

- a) Add a watch variable to the window 'Test And Commissioning'. Open the tab 'Resources' in the project window. Open the tree view of the task 'COUNTER' and select the variable 'COUNT'. Select the command 'Add To Watchlist' in the context menu. The variable 'COUNT' is added to the window 'Test And Commissioning'.
- b) Add also the variables 'UPCOUNTING' and 'COUNTMAX'

×	Instancepath	Name	Value	Туре	Address	Force	Comment
1	COUNTER	TEXT	<empty></empty>	STRING			
<u>[</u>]	COUNTER	COUNTMAX	3000	UINT			
<u>اغ</u>	COUNTER	UPCOUNTING	TRUE	BOOL			
Įξ.	COUNTER	COUNT	0	UINT			
HQ.							
Į€.							
est							
H-							

Figure 21: 'Test And Commissioning' Window

c) For a step by step program debugging add a breakpoint to the program code. Put the mouse cursor to the line where you want to add the breakpoint. Click the menu 'PLC' and the submenu 'Breakpoint' and select the menu item 'Toggle'. The program is stopping at the breakpoint.

Figure 22: 'Breakpoint'

d) Delete the breakpoint by toggling the breakpoint. Continue the program execution by clicking the menu 'PLC' and the submenu 'Breakpoint' and select the menu item 'Go'.

Figure 23: Continue Program Execution

6 Project Settings

The following chapters explain the function of some project specific settings which have to be done during the programming process.

6.1 **Resource Properties**

In general, a resource is equivalent to a PLC or a micro controller. A resource definition consists of a name for identification, the hardware description, i.e. information about the properties of your PLC which will be used by OpenPCS, and a connection name, i.e. information about the kind of communication between OpenPCS and the control system.

A resource maintains a list of tasks which are to be run on the control system.

Project • ×
E
COUNT
COUNTMAX
- TEXT
-
Files I Resources Lib @ Help

6.1.1 Edit Resource Properties

To edit a resource, right-click on it and choose 'Properties' in the context-menu. A dialog-box will open, where you can change the following properties:

Edit Resource Specifications - maxo	n motor EPOS P 24/5	Hardware Module maxon motor EPOS P 24/5 infoteam SmartSIM maxon motor EPOS P 24/5 maxon motor MCD EPOS P 60W
Download Symbol Table Optimization size only	Network Connection ProxyEpos OK Cancel	Network Connection ProxyEpos Simulation
Optimization size only normal speed only size only		

Figure 25: Resource Specifications window

Hardware Module:

Under 'Hardware Module', select the configuration file corresponding to the controller you are using. In case of using maxon hardware, the modules 'maxon motor EPOS P 24/5' and 'maxon motor MCD EPOS P 60 W' are available. To use the windows simulation SmartSIM, use 'SmartSIM'.

Network Connection:

Under 'Network Connection', select the communication connection to connect to your resource. To communicate with maxon EPOS P 24/5 or MCD EPOS P 60 W choose 'ProxyEpos'. To work with the PLC-Simulation of OpenPCS select 'Simulation'.

Options:

- Enable Upload: Not supported.
- Download Symbol Table: No effect.

Optimization:

OpenPCS supports optimization settings 'speed', 'size' and 'normal'.

- size only: Compiler option, that optimizes the generated code on code size.
- speed only: Compiler option, that optimizes the generated code on speed.
- normal:

Mix between size only and speed only.

Remark:

Take in mind that full debugging is only possible with Optimization option size only!

6.2 Task Properties

In general, a task is equivalent to a program. The definition of a task consists of the name, the information about the execution of the task and a POU of type PROGRAM which should be executed in this task.

6.2.1 Edit Task Properties

To edit a task, right-click on it and choose 'Properties' in the context-menu. A dialog-box will open, where you can change the following properties:

Task Type:

OpenPCS supports all three tasks types defined by IEC-61131-3.

Edit Task Specification	5		×
Program Name	т	ask Type	
Counter		Cyclic	•
Options		Cyclic Timer pterrupt]
Priority	1 🕂	resource defaults	
Time [ms]	1 📩		
Interrupt	V		
		OK	Cancel

Figure 26: Edit Task Specification - Task Type

- Cyclic:

Cyclic tasks will be executed when no timer or interrupt tasks are ready to run. The priority that can be specified in the task properties will be interpreted as a cycle interleave, e.g. priority = 3 will have this task executed only every third cycle. No particular execution order is defined by OpenPCS amongst multiple cyclic tasks.

- Timer:

Timer tasks will be executed every n milliseconds, with n specified in the task properties.

- Interrupt:

Interrupt tasks will be executed as soon as the interrupt occurs they are linked to.

Optimization:

OpenPCS supports optimization settings "speed", "size" and "normal".

t Task Specifications	
rogram Name	Task Type
Counter	Cyclic
Options	Optimization
Priority	1 + resource defaults
Time [ms]	1 - normal speed only
Interrupt	resource defaults

Figure 27: Edit Task Specification - Optimization

resource default:

This task uses the Optimization attributes of the resource.

- size only: Compiler option, that optimizes the generated code on code size.
- speed only: Compiler option, that optimizes the generated code on speed.
- normal: Mix between size only and speed only.

Remark:

Take in mind that full debugging is only possible with Optimization option size only!

Interrupt

This task type is only executed at particular interrupt events. The type of the event is selected with the option Interrupt.

Edit Task Spe	cifications	×
Program Nam	e	Task Type
Counter		Interrupt
Options-		Optimization
Priority	1 .	resource defaults
Time [ms]	1 🗵	
Interrupt		
	STARTUP STOP ERROR CANSYNC CANERR	DK Cancel

Figure 28: Edit Task Specification - Interrupt

- STARTUP:

The task with type Interrupt and options startup is executed once at startup **Remark:** Function Blocks needs typically more than one cycle to finish

- STOP:

The task with type Interrupt and option Stop is executed once at program stop **Remark:** Function Blocks needs typically more than one cycle to finish

- ERROR:

The task with type Interrupt and option Error is executed once at program error **Remark:** Function Blocks needs typically more than one cycle to finish

- CANSYNC:

The task with type Interrupt and option CanSync is synchronized with CANopen SYNC **Remark:** The interrupt source for this task is the CANopen SYNC Cycle, the task will never be called when the SYNC Master is not activated

- CANERR:

The task with type Interrupt and option CanError is synchronized with CANopen EMCY **Remark:** The interrupt source for this task is the CANopen EMCY, this task is called once when a connected CANopen Slave reports a Error with CANopen EMCY

6.3 Network Configuration

EPOS P Positioning Controller

The 'Network Configuration' tool is used to set up a multi axis network. Use this tool to configure the master and slave devices to be used in a multi axis IEC-61131 program.

6.3.1 Overview

Network Selection	Device Sele	ction Tabs	Configura	tion View
\	1		1	
Network Configuration - E	EPOS P [Node 1]			×
Network Selection	Maste	r SYNC Master Heartbeat Control		* *
Devices in Network CAN CPOS P (Node 1) POS [Node 2] POS [Node 3] POS [Node 5] POS [Node 5] POS [Node 6] POS [Node 7] POS [Node 8] POS [Node 8]		EPOS P [Node 1] Network Management Setting V NMT Master Start NMT Master Start NMT Slaves Boot Time 500 Start All NMT Slaves together	EPOS P is in master m Master switches into si Slaves are switched in ms Start all slaves togethe	ode ate operational io state operational r using Node ID 0
			<u>K</u>	Apply Cancel

Network Status Icons

Device Status Icons

Figure 29: Network Configuration Overview

Network Selection	Display	Displays all available networks		
Device Selection	Display	Display all available devices in the network selected		
Tabs	Selection	on of config	uration views	
Configuration View	Configu	ration view	to change settings	
Network Status Icons	2	Okay	There's no error or warning in this network	
	B ,	Warning	There are warnings in this network. Check the devices	
	5	Error	There are errors in this network. Check the devices	
Device Status Icons	Ţ	Okay	There's no error or warning in this device configuration	
	<u>r</u>	Warning	There are warnings in this device configuration. Check the configuration views	
	Ø	Error	There are errors in this device configuration. Check the configuration views	

maxon	motor
EPOS P Positioning Controller	Programming Reference

6.3.2 Master Configuration

For the master configuration select the master item in the device selection. The master has to be configured for all networks.

6.3.2.1 Configuration View "Master"

The configuration view "Master" allows to define the behaviour of the master device.

ister Heartbeat Control		• •
[Node 1] etwork Management Setting 7 NMT Master 9 Start NMT Master 9 Start NMT Slaves	EPOS P is in master mode Master switches into state operational Slaves are switched into state operational	
Boot Time 500 ms		
7 Start All NMT Slaves together	Start all slaves together using Node ID 0	
	Inster Heartbeat Control [Node 1] etwork Management Setting 7 NMT Master 7 Start NMT Master 8 Start NMT Slaves 8 Boot Time 500 ms 7 Start All NMT Slaves together	Inster Heartbeat Control INode 1 Intervent Setting Intervent Setti

Figure 30: Configuration View 'Master'

Option	Default	Description
NMT Master	Checked	EPOS P is in master mode and is able to communicate with slaves
Start NMT Master	Checked	After bootup, the master is switching into NMT state operational
Start NMT Slaves	Checked	After bootup, the master is switching the slaves into NMT state operational
Boot Time	500 ms	Time to wait before addressing slaves after reset
Start All NMT Slaves together	Checked	All slaves are starting together using a broadcast service

6.3.2.2 Configuration View "SYNC Master"

The configuration view "SYNC Master" allows to define the behaviour of the SYNC Master in the network. The SYNC Master must be active if any synchronous PDO is configured.

Master SYNC Master Heartbeat Control	
EPOS P [Node 1]	
Sync Producer Active	
SYNC COB-ID 0x0000080	
Max Base Bus Load 60 🗶	
Cycle Time 100000 us	
Window Length 50000 us 50 式 %	
IMax Counter ValueU	
Base Bus Load 0.0 %	
Peak Bus Load 47.0 %	
Show Network Infos	

Figure 31: Configuration View 'SYNC Master'

Option	Default	Description
Sync Producer Active	Checked	Enable or Disable the SYNC Master
SYNC COB-ID	0x0000080	COB-ID of the SYNC CAN Frame
Max Base Bus Load	60%	Recommended Maximum Base Bus Load
Cycle Time	100'000 us	Cycle Time of the SYNC CAN Frame
Window Length	50%	Window for sending and receiving synchronous PDOs
Max Counter Value	Disabled	Enable or disable sending a SYNC CAN Frame including a data byte containing a counter value

Calculations	Description
Base Bus Load	Calculated bus load containing CAN frames, that are cyclically transmitted. The following CAN frames are included in calculation: SYNC, PDO sync, Heartbeat
Peak Bus Load	Calculated bus load containing all CAN frames, that are transmitted. The following CAN frames are included: SYNC, PDO sync, Heartbeat, PDO async Remark: The asynchronous PDO's are a potential risk for a bus overload. Use the 'Inhibit
	Time' to limit the transmission rate.

maxon motor	
EPOS P Positioning Controller	Programming Reference

How To Reduce Bus Load

In case of a bus load higher than the maximum bus load, the transmission of CAN frames has to be limited. Use one of the following action to reduce the bus load.

Action	Objects	Description / Effect	
Increase CAN Bitrate	All Objects	The CAN Bitrate can be increased up allowed Bitrate for your network lengt	o to 1Mbit/s. Consider the maximum
		Bitrate	Max. line length according to CiA DS-102
		1 Mbit/s	25 m
		800 kBit/s	50 m
		500 kBit/s	100 m
		250 kBit/s	250 m
		125 kBit/s	500 m
		50 kBit/s	1000 m
		20 kBit/s	2500 m
Increase Cycle Time	SYNC, PDO sync	The cycle time of the SYNC produce bus load. Increasing the cycle time is variables in your IEC-61131 program	r may be increased to reduce the reducing the update rate of network .
Increase Heartbeat Producer Time	Heartbeat	Increase the producer time of the heap producer time is reducing the reaction	artbeat CAN frames. Increasing the n time to a broken CAN bus.
Increase Inhibit Time	PDO async	Increase the inhibit time of the async time is reducing the update rate of ne program.	hronous PDO's. Increasing the inhibit etwork variables in your IEC-61131

For more details click the button 'Show Network Infos':

_ycle ⊓i Window	ne 100000 Length 50000)	us Min Cycle Tim us Min Window L	e 76 ength 48	us us
an Bir Iase Bu Peak Bu	sLoad 0.0 sLoad 47.0	\$	% Max Base Bus %	Load 60.0	%
Туре	Object	Count	Time/Cycle	Total Time/Cycle	Load
Base Base Base Peak	SYNC PDO sync Heartbeat PDO async	1 0 1 1	46 us 0 us 2 us 46999 us	46 us 0 us 2 us 46999 us	0.0 % 0.0 % 0.0 % 47.0 %
			Chau Einun		

Figure 32: Network Infos

Info	Description
Cycle Time	Configured Cycle Time
Min Cycle Time	Min Cycle Time calculated based on the maximum base bus load.
Window Length	Configured Window Length
Min Window Length	Min Window Length calculated based on the maximum base bus load.
CAN Bitrate	Configured CAN Bitrate

maxon motor

Programming Reference

EPOS P Positioning Controller

Info	Description
Base Bus Load	Calculated bus load containing CAN frames, that are cyclically transmitted. Have a look at the detailed load table to see what types of CAN frames are included in calculation.
Max Base Bus Load	Recommended Maximum Base Bus Load
Peak Bus Load	Calculated bus load containing all CAN frames, that are transmitted. Have a look at the detailed load table to see what type of CAN frame is included in calculation.
	Remark: The asynchronous PDO's are a potential risk for a bus overload. Use the 'Inhibit Time' to limit the transmission rate.
Table Column	Description
Туре	Base: Bus load of this object is added to the base and peak bus load.
	Peak: Bus load of this object is added only to the peak bus load.
Object	Type of CAN frame transmitted
Count	Number of CAN frames transmitted
Time/Cycle	Time to transmit one CAN frame per cycle time.
	Remark: For the asynchronous PDO's a mean value is calculated based on the inhibit time of the asynchronous PDO.
Total Time/Cycle	Total time to transmit all CAN frames
Load	Bus load caused by all objects of this type

Clicking the button 'Show Figure' shows the following the timing diagram:

Figure 33: Cycle Time

6.3.2.3 Configuration View "Heartbeat Control"

The configuration view "Heartbeat Control" allows to define the error control behaviour of the master. Activate the heartbeat producer to monitor a breakdown of the master by the slave devices. Activate the heartbeat consumer to monitor a breakdown of a slave device.

aster SYNC Master Heartbeat Control			ł
Produce Heartbeat	Consumed by	(- ·	
Producer Time2000msTolerance500ms	Device	2000 ms	2500 ms
🔽 Consume Heartbeat	Produced by		
Consume Heartbeat	Produced by	Producer	Consumer
Consume Heartbeat Consumer Time 2500 ms Tolerance 500 ms	Produced by Device Device	Producer 2000 ms	Consumer 2500 ms
Consume Heartbeat Consumer Time 2500 ms Tolerance 500 ms	Produced by Device EPOS [Internal]	Producer 2000 ms	Consumer 2500 ms

Figure 34: Configuration View 'Heartbeat Control'

Option	Default	Description	
Producer Heartbeat	Disabled	Enable or disable the he	eartbeat producer
Producer Time	2000 ms	Transmission rate of the	e heartbeat CAN frame
Tolerance	500 ms	Tolerance time for the s always be higher than t transmission of a heart	lave heartbeat consumer. The consumer time must he producer time. A high bus load can delay the beat CAN frame.
Consumed by	Disabled	Device	In case of a breakdown of the master (heartbeat producer), this device is going to error state.
		Producer	Heartbeat producer time
		Consumer	Heartbeat consumer time
Option	Default	Description	
Option Consumer Heartbeat	Default Disabled	Description Enable or disable the he	eartbeat consumer
Option Consumer Heartbeat Consumer Time	Default Disabled 2000 ms	Description Enable or disable the he Expected transmission	eartbeat consumer rate of the heartbeat CAN frame
Option Consumer Heartbeat Consumer Time Tolerance	Default Disabled 2000 ms 500 ms	Description Enable or disable the he Expected transmission Tolerance time for the n must always be higher to the transmission of a he	eartbeat consumer rate of the heartbeat CAN frame naster heartbeat consumer. The consumer time than the producer time. A high bus load can delay eartbeat CAN frame.
OptionConsumer HeartbeatConsumer TimeToleranceProduced by	Default Disabled 2000 ms 500 ms Disabled	Description Enable or disable the he Expected transmission Tolerance time for the n must always be higher to the transmission of a he Device	eartbeat consumer rate of the heartbeat CAN frame naster heartbeat consumer. The consumer time than the producer time. A high bus load can delay eartbeat CAN frame. In case of a breakdown of the master (heartbeat consumer), this device is going to error state.
Option Consumer Heartbeat Consumer Time Tolerance Produced by	Default Disabled 2000 ms 500 ms Disabled	Description Enable or disable the he Expected transmission Tolerance time for the n must always be higher to the transmission of a he Device Producer	eartbeat consumer rate of the heartbeat CAN frame master heartbeat consumer. The consumer time than the producer time. A high bus load can delay eartbeat CAN frame. In case of a breakdown of the master (heartbeat consumer), this device is going to error state. Heartbeat producer time

6.3.3 Slave Configuration

For the slave configuration, select the network and one of the slave items in the device selection.

6.3.3.1 Configuration View "Slave"

The configuration view "Slave" allows defining the behaviour of the slave device.

EPOS [Internal]		
Network	Management Settings	
NMT	Slave	Slave is available in network and NMT slave!
🔽 Boot	Slave	Slave will be booted at program start!
Manc	latory Slave	Error is reported if slave can't be booted!
Axis Num	ber Axis 0	Used for motion control Library
Axis Type	e Standard	

Figure 35: Configuration View 'Slave'

Option	Default	Description
NMT Slave	Checked	The slave is available in CAN network as a NMT slave
Boot Slave	Checked	The slave will be booted at the program start
Mandatory Slave	Checked	Error is reported if slave can't be booted
Axis Number	Axis X	Axis Number is used by all motion control function blocks. The default value is defined by the node Id.
		Remark: If no axis number is defined, the motion control function blocks can't be used.
Axis Type	Standard	Axis Type is used by all motion control function blocks.
		Remark: If the axis type is not defined as 'Standard', the motion control function blocks can't be used.

Programming Reference

6.3.3.2 Tab "Network Variables"

The configuration view "Network Variables" allows to setup network variables for the IEC-61131 program.

Network Variable	Producer Object	TxPDO	Bus	RxPD0	Consumer Object
Difference Axis0_qwControlWord	Process Output UINT16 - 1	TxPD0 1	>	RxPD0 1	ControWord
I32 Axis0_qdPositionModeSettingValue	Process Output INT32 - 1	TxPD0 1	>	RxPD0 1	PositionMode Setting Value
Network Variables: EPOS P [Node 1] <	EPOS [Internal]		Add N	Network Varia	able Delete Network Variab
Network Variables: EPOS P [Node 1] <⊶ Network Variable	EPOS [Internal]	RxPDO	Add M	Network Varia	able Delete Network Variab
Network Variables: EPDS P [Node 1] < Network Variable 715 Axis0_iwStatusWord	EPOS [Internal] Consumer Object Process Input UINT16 - 1	RxPD0 RxPD0 1	Add M Bus	Network Varia TxPD0 TxPD0 1	ble Delete Network Variab
Network Variables: EPOS P [Node 1] < Network Variable 975 Axis0_iwStatusWord 952 Axis0_idPositonActualValue	EPDS [Internal] Consumer Object Process Input UINT16 - 1 Process Input INT32 - 1	RxPD0 RxPD0 1 RxPD0 1	Add M Bus <	Vetwork Varia TxPD0 TxPD0 1 TxPD0 1	ble Delete Network Variab Producer Object StatusWord Position Actual Value

Figure 36: Configuration View 'Network Variables'

Table Network Variables: EPOS P [Node 1] → EPOS [Internal]

Displays all configured network variables sent from the master to the slave.

Column	Description
Network Variable	Name of network variable to be used in IEC-61131 program. The network variables can be exported to a network variable file (*.poe)
Producer Object	Object in object dictionary of the master. This object is mapped to the transmit PDO
TxPDO	Configured transmit PDO to send data to the slave
Bus	Direction of the data exchange
RxPDO	Configured receive PDO to receive data from the master
Consumer Object	Object in object dictionary of the slave. This object is mapped to the receive PDO

Table Network Variables: EPOS P [Node 1] ← EPOS [Internal]

Displays all configured network variables sent from the slave to the master.

Column	Description
Network Variable	Name of network variable to be used in IEC-61131 program. The network variables can be exported to a network variable file (*.poe)
Consumer Object	Object in object dictionary of the master. This object is mapped to the receive PDO
RxPDO	Configured receive PDO to receive data from the slave
Bus	Direction of the data exchange
TxPDO	Configured transmit PDO to send data to the master
Producer Object	Object in object dictionary of the slave. This object is mapped to the transmit PDO

Add Network Variable:

A network variable can be added by:

 \Rightarrow clicking the button

Add Network Variable

- or
- \Rightarrow via the context menu (right mouse click)

🕂 Add Network Variable

Programming Reference

Add Network Variable	Add Network Variable
Consumer EPOS [Internal]	Producer EPOS [Internal]
Consumer Object CurrentMode Setting Value	Producer Object Encoder Counter
Producer EPOS P [Node 1] Network Variable Axis0_qwCurrentModeSettingValue Producer Object Process Output INT16 - 1	Consumer EPOS P [Node 1] Network Variable Axis0_iwEncoderCounter Consumer Object Process Input UINT16 - 2
Direction: Master → Slave Consumer Object: Object to be written by network variable	Direction: Slave → Master Producer Object: Object to be read by Network Variable

Figure 37: Add Network Variable

Direction: Master \rightarrow Slave

Parameter	Description
Consumer Object	Object to be written by network variable
Network Variable	Name of network variable to be used in IEC-61131 program
Producer Object	Process object of master

Direction: Slave \rightarrow Master

Parameter	Description
Producer Object	Object to be read by network variable
Network Variable	Name of network variable to be used in IEC-61131 program
Consumer Object	Process object of master

Delete Network Variable:

A network variable can be deleted by selecting the network variable in the list and:

 \Rightarrow clicking the button

Delete Network Variable

or

⇒ via the context menu (right mouse click) X Delete Network Variable

Edit PDO Links:

The PDO links, automatically created by adding a network variable can be edited using the context menu item.

Context menu item (right mouse click): DI Edit PDO Links

The dialogue 'Edit PDO Links' shows all PDO's linked between the master and the slave device. The configuration of the PDO can be changed using this dialogue.

PDO Links: EPOS P [Node 1]> EPOS [Internal] □-D ^I TxPDO 1> RxPDO 1 □-JI Process Output UINT16-1> ControlWord □-JI Process Output INT32 - 1> PositionMode Setting Value	PD0 Link
Communication Parameter	
COB-ID 0x40000201	
Transmission Type Asynchronous	
Inhibit Time 0.0 ms	<u> </u>
Event Timer 🔲 ms 🔲 Enabled	Cancel

Figure 38: Edit PDO Links

Communication Parameter:

Parameter	Description			
COB-ID	COB-ID of the linked PDO's.			
Transmission Type	Synchronous	The PDO transmission is triggered by the Sync Master		
	Asynchronous	The PDO transmission is trigger by a value change or an event timer		
	Asynchronous RTR only Do not use for network variables!			
Inhibit Time	Minimal transmission interval for asynchronous PDO's			
	Remark: An inhibit time of zero is a potential risk for a bus overload!			
Event Timer	The asynchronous PDO transmission is triggered by an elapsed event timer			

PDO Link:

Button	Description
New	Create a new PDO link between the master and slave devices
Delete	Delete an existing PDO link between the master and slave device. Only an empty PDO link can be deleted. Remove first the mapped objects.
Lock / Unlock	Lock or unlock a PDO link. A locked PDO can not be used by any other network variable.

Mapped Objects:

Button	Description
Move To	Move the selected objects to another PDO link
Move Up	Move the selected objects up in the list of mapped objects
Move Down	Move the selected object down in the list of mapped objects

Lock & Unlock PDO's:

Any PDO's of the master or slave devices can be locked or unlocked. A locked PDO can't be used by any other network variables.

Context menu item (right mouse click):

🕵 Lock & Unlock PDOs 🛛

Figure 39: Lock & Unlock PDO's

Icons	Description	
	Locked PDO. Can't be used by any other network variables	
	Unlocked transmit PDO. Can be used by new network variables	
	Unlocked receive PDO. Can be used by new network variables	

Reset PDOs:

To create a good starting point for a network variable definition, the PDO configuration can be reset.

Context menu item (right mouse click): Reset

Reset PDOs

Reset PDOs	×
Select the PD0s you want to reset! Reset unlinked PD0s Reset linked PD0s between EP0S P [Node 1] and EP0S [Internal] Reset all PD0s in Network Internal	
<u>D</u> K <u>C</u> ancel	

Figure 40: Reset PDO's

Options	Description
Reset unlinked PDO's	All active PDO's not linked to any known devices in the network will be deactivated. Inactive PDO's are then available for new network variables.
Reset linked PDO's between EPOS P and EPOS	All active and linked PDO's between two devices are reset. Use this option to clear the PDO configuration of two devices. All network variables are deleted.
Reset all PDO's in network	All active PDO's in a network are reset.

Show Network Variable File:

The declaration of the network variables for the IEC-61131 program are shown.

Context menu item (right mouse click):

Show Network Variable File

Save Network Variable File:

The declarations of the network variables for the IEC-61131 program are saved to a file (*.poe). This file can be included in a IEC-61131 program.

Context menu item (right mouse click):

📙 Save Network Variable File 🛛

Print Network Variable File :

The declarations of the network variables for the IEC-61131 program are printed.

Context menu item (right mouse click):

🞒 Print Network Variable File -

VAR_GLOBAL Axis0_iwStatusWord Axis0_idPositionActualVa		%IW64.0: %ID96_0:	UINT; DINT;	
Axis0_quControlWord Axis0_qdPositionModeSett	ingValue AT	%QW64.0: %QD96.0:	UINT; DINT;	
END_VAR				

Figure 41: Declaration of network variables

EPOS P Positioning Controller

6.3.3.3 Configuration View "Heartbeat Control"

The configuration view "Heartbeat Control" allows defining the error control behaviour of a slave device. Activate the heartbeat producer to monitor a breakdown of the slave by any other devices. Activate the heartbeat consumer to monitor a breakdown of any other device.

Slave Network Variables Heartbeat Co	ontrol E	Bootup		
Produce Heartbeat		Consumed by		
Broducer Time 2000	me	Device	Producer Time	Consumer Time
		EPOS P [Node 1]	2000 ms	2500 ms
i olerance jou	ms	EPOS [Node 3]	2000 ms	0 ms
Consume Heartbeat		Produced by		
Comment Time Jorgo		Device	Producer Time	Consumer Time
Consumer Time 2500 r	ms	Device EPOS P [Node 1]	Producer Time 2000 ms	Consumer Time 2500 ms
Consumer Time 2500 r Tolerance 500 r	ms ms	Device EPOS P [Node 1] EPOS [Node 3]	Producer Time 2000 ms 0 ms	Consumer Time 2500 ms 0 ms
Consumer Time 2500 r Tolerance 500 r	ms ms	Device EPOS P [Node 1] EPOS [Node 3]	Producer Time 2000 ms 0 ms	Consumer Time 2500 ms 0 ms
Consumer Time 2500 r Tolerance 500 r	ms ms	Device EPOS P [Node 1] EPOS [Node 3]	Producer Time 2000 ms 0 ms	Consumer Time 2500 ms 0 ms
Consumer Time 2500 r Tolerance 500 r	ms ms	Device EPOS P [Node 1] EPOS [Node 3]	Producer Time 2000 ms 0 ms	Consumer Time 2500 ms 0 ms
Consumer Time 2500 r Tolerance 500 r	ms ms	Device EPOS P [Node 1] EPOS [Node 3]	Producer Time 2000 ms 0 ms	Consumer Time 2500 ms 0 ms
Consumer Time 2500 r Tolerance 500 r	ms	Device EPOS P [Node 1] EPOS [Node 3]	Producer Time 2000 ms 0 ms	Consumer Time 2500 ms 0 ms

Figure 42: Configuration View "Heartbeat Control"

Option	Default	Description				
Producer Heartbeat	Disabled	Enable or disable the heartbeat producer				
Producer Time	2000 ms	Transmission rate of the	Transmission rate of the heartbeat CAN frame			
Tolerance	500 ms	Tolerance time for the heartbeat consumer. The consumer time must always be higher than the producer time. A high bus load can delay the transmission of a heartbeat CAN frame.				
Consumed by	Disabled	Device	In case of a breakdown of the heartbeat producer, this device is going to error state.			
		Producer Heartbeat Producer Time				
		Consumer	Heartbeat Consumer Time			

Option	Default	Description				
Consumer Heartbeat	Disabled	Enable or disable the heartbeat consumers				
Consumer Time	2000 ms	Expected transmission	rate of the heartbeat CAN frame			
Tolerance	500 ms	Tolerance time for the heartbeat consumer. The consumer time must always be higher than the producer time. A high bus load can delay the transmission of a heartbeat CAN frame.				
Produced by	Disabled	Device	In case of a breakdown of the heartbeat consumer, this device is going to error state.			
		Producer Heartbeat Producer Time				
		Consumer	Heartbeat Consumer Time			

6.3.3.4 Configuration View "Bootup"

The configuration view "Bootup" allows to define various bootup configuration checks. During configuration the identification values of the slave device are stored in the master. During bootup procedure the master is checking if the correct slave device is connected to the CAN bus. If a bootup check fails the IEC-61131 program will not be started.

Bootup Lneck	Status Valid	0.00020192	0.00020192
Vendor Id	Valid	0x00020132	0x00020132
Product Code	Valid	0x62100000	0x62100000
Revision Number	Valid	0x20320000	0x20320000
Serial Number	Valid	0x09002239	0x09002239
Configuration Date Time	Valid	12.06.2007 16:25:52	12.06.2007 16:25:52
Update Bootup Checks			

Figure 43: Configuration View "Bootup"

Bootup Check	Default	Description
Device Type	Disabled	Contains information about the device type. The lower 16-bit describes the CANopen device profile (i.e. 0x0192 = DSP 402)
Vendor Id	Disabled	Contains a unique value allocated to each manufacturer (i.e. 0x000000FB = maxon motor ag)
Product Code	Disabled	Contains a specific device version (i.e. 0x62100000 = Hardware Version EPOS 24/5)
Revision Number	Disabled	Contains a specific firmware version (i.e. 0x20320000 = Software Version EPOS 24/5)
Serial Number	Disabled	Contains a unique value allocated to each device (i.e. 0x62100000 = Hardware Version EPOS 24/5)
Configuration Date Time	Disabled	Contains information about the last change of the configuration settings.

6.3.4 Minimal Network Configuration

In order to use a motion control axis in a IEC-61131 program the following configuration steps have to be done.

Step 1: Create Project in EPOS Studio

- 1. Select menu item 'New Project' in the menu 'File'
- 2. Select a EPOS P project template and click 'Next'
- 3. Enter the project name, destination directory and click 'Finish'

Step 2: Scan the Network Topology

- 1. Change to the tab 'Communication' in the navigation window
- 2. Select the icon for the CAN network and execute the command 'Scanning Devices' in the context menu
- 3. Setup the scanning settings

- 4. Start Scanning
- 5. Close the dialog 'Scanning Devices' clicking OK
- 6. Connect all new scanned devices

Step 3: Open the Tool 'Network Configuration'

- 1. Change to the tab 'Tools' in the navigation window
- 2. Select the device EPOS P in device selection
- 3. Open the tool by clicking the item 'Network Configuration

Step 4: Minimal Master Configuration

- 1. Select the master device EPOS P in the device selection
- 2. Select the configuration view 'Master' and configure the following options
 - NMT Master: Enabled
 - Start NMT Master: Enabled
 - Start NMT Slaves: Enabled
 - Boot Time: 500 ms
 - Start All NMT Slaves together: Enabled
- 3. Select the configuration view 'SYNC Master' and disable the Sync Producer
- 4. Select the configuration view 'Heartbeat Control' and disable the Heartbeat Producer

Step 5: Minimal Slave Configuration

- 1. Select one of the slave devices in the device selection
- 2. Select the configuration view 'Slave' and configure the following options
 - NMT Slave: Enabled
 - Boot Slave: Enabled
 - Mandatory Slave: Enabled
 - Axis Number: Select the axis number for example corresponding to the Node Id
 - Axis Type: Standard
- 3. Select the configuration view 'Heartbeat Control' and disable the Heartbeat Producer
- 4. Select the configuration view 'Booting' and disable all bootup checks
- 5. Repeat the slave configuration for all slaves in your system

Step 6: Save Network Configuration

1. Write and save the network configuration by clicking the OK button

Step 7: Start writing your IEC-61131 program

1. Open the programming tool and start writing your program addressing network devices

maxon motor EPOS P Positioning Controller Programming Reference

6.3.4.1 Communication via Function Blocks

In order to address network devices using motion control function blocks, all devices need a unique axis number. Executing the minimal network configuration for all devices. The devices can be addressed without any further configuration steps.

Motion Control Function Blocks:

Function Block		Configuration		
Parameter	AXIS_REF.AxisNo = Axis Number	Parameter Axis Number		
AXIS_REFEnable	MC_Power	Axis Number Axis 0 Axis Type Standard	Ve':	

Figure 44: Motion control function block: Configuration of axis number

CANopen DS-301 Function Blocks:

Function Block		Configuration	
Parameter	Device: Node Id Port: 0 internal port, 1 CAN port	Parameter	Node Id
Function Block Example	e: CAN_SdoRead	Device Selection: Devices in Network CAN EPOS P [Node 1]	21
BOOL Enable USINT Device USINT Port UINT Index USINT SubIndex	Done BOOL Error BOOL ErroriD DINT Data UDINT	Can be changed by DIF	e switch or Startup Wizard

Programming Reference

6.3.4.2 Communication via Network Variables

In order to address network devices using network variables some additional configuration steps are necessary.

Step 1: Open Configuration View 'Network Variables'

1. Open the tool 'Network Configuration'

2. Select one of the slave devices in the device selection and activate the configuration view 'Network Variables'

Step 2: Define Output Network Variables

Network Variables from the master to the slave can be used to control a slave device.

- 1. Click the button 'Add Network Variable' in the upper part of the view
- 2. Select a consumer object in the selection combo box
- 3. Confirm selection by clicking OK
- 4. Repeat steps for each network variable

Network Variable from IEC-61131 Program to Slave

Configuration View 'Network Variables'

Network Variables: EPOS P [Node 1]> EPOS [Internal]							
Network Variable	Producer Object	TxPDO	Bus	RxPDO	Consumer Object		
I32 Axis0_qdPositionModeSettingValue	Process Output INT32 - 1	TxPD0 1	>	RxPD0 1	PositionMode Setting Value		
	1						
J							
Add Network Variable Delete Network Variable							

Figure 46: Output Network Variables

Step 3: Define Input Network Variables

Network Variables from the slave to the master can be used to monitor actual values.

- 1. Click the button 'Add Network Variable' in the lower part of the view
- 2. Select a producer object in the selection combo box
- 3. Confirm selection by clicking OK
- 4. Repeat steps for each network variable

Network Variable from Slave to IEC-61131 Program

Configuration View 'Network Variables'

Network Variables: EPOS P [Node 1] < EPOS [Internal]							
Network Variable	Consumer Object	RxPDO	Bus	TxPDO	Producer Object		
I32 Axis0_idPositionActualValue	Process Input INT32 - 1	RxPD0 1	<	TxPD0 1	Position Actual Value		
1							
Add Network Variable Delete Network Variable							

Step 4: Network Variable File (*.poe)

1. Click the browse button on the bottom of the view

2. Enter a file name for the network variable export and close the dialogue

Network Variable File C:\MyDirectory\Network Variables.poe

Figure 48: Network Variable File

Step 5: Save Network Configuration and Export Network Variables

1. Click the OK button to save the network configuration. The network variables are exported to the selected network variable file.

Step 6: Import Network Variables to IEC-61131 program

- 1. Open your IEC-61131 program in the programming tool 'Open PCS'.
- 2. Select the menu item 'Import' in the submenu 'File' of the menu 'File'
- 3. Click the context menu item 'Link to Active Resource' to use the network variables

Figure 49: Project Browser in Programming Tool

7 Function Block Description

7.1 Motion Control Function Blocks

7.1.1 Function Block MC_Power

The Function Block MC_Power controls the power stage of the axis (enabled or disabled).

Figure 50: MC_Power

Input/Output Variable

Name	Data Type	Elements	Element Type	Default Value	Value Range
Axis	AXIS_REF	AxisNo	USINT	0	0 to 31

The input/output variable Axis defines the addressed axis. With the "Network Configuration" tool the axis number of the internal and the external axis can be set freely within the allowed value range.

Input Variable

Name	Data Type	Default Value	Value Range	Unit
Enable	BOOL	FALSE	TRUE, FALSE	-

As long as the Enable input is TRUE (positive state), the power stage of the axis is activated.

Output Variables

Name	Data Type	Default Value	Value Range	Unit
Status	BOOL	FALSE	FALSE, TRUE	-
Error	BOOL	FALSE	FALSE, TRUE	-
ErrorID	DINT	0	See chapter 10.2 Motion Control Functionblocks Error Codes	-

The output Status is showing the state of the power stage. An error during execution of the function block is signalled at the output Error. Additionally an ErrorID allows to get more information about the error cause.

Function Block Call using the programming language ST

(* Call function block instance *)
fbPower(Axis := myAxis, Enable := TRUE);

Important

The function block MC_Power has to be called until the output Status has the same value as the input Enable. Breaking this rule causes system errors.
7.1.2 Function Block MC_Reset

The Function Block MC_Reset is resetting all internal axis-related errors.

Figure 51: MC_Reset

Input/Output Variable

Name	Data Type	Elements	Element Type	Default Value	Value Range
Axis	AXIS_REF	AxisNo	USINT	0	0 to 31

The input/output variable Axis defines the addressed axis. With the "Network Configuration" tool the axis number of the internal and the external axis can be set freely within the allowed value range.

Input Variable

Name	Data Type	Default Value	Value Range	Unit
Execute	BOOL	FALSE	TRUE, FALSE	-

At a positive edge of the input Execute the axis status is changed from Errorstop to StandStill. After execution of MC_Reset the power stage has to be reenabled (MC_Power).

Output Variables

Name	Data Type	Default Value	Value Range	Unit
Done	BOOL	FALSE	FALSE, TRUE	-
Error	BOOL	FALSE	FALSE, TRUE	-
ErrorID	DINT	0	See chapter 10.2 Motion Control	-

A successful reset of the axis status is signalled by the output Done. An error during execution of the function block is signalled at the output Error. Additionally an ErrorID allows to get more information about the error cause.

Function Block Call using the programming language ST

Important

The function block MC_Reset has to be called until the termination is signalled at the output (Done or Error).

7.1.3 Function Block MC_ReadStatus

The Function Block MC_ReadStatus returns in detail the status of the axis with respect to the motion currently in progress.

Figure 52: MC_ReadStatus

Input/Output Variable

Name	Data Type	Elements	Element Type	Default Value	Value Range
Axis	AXIS_REF	AxisNo	USINT	0	0 to 31

The input/output variable Axis defines the addressed axis. With the "Network Configuration" tool the axis number of the internal and the external axis can be set freely within the allowed value range.

Input Variable

Output Variables

Name	Data Type	Default Value	Value Range	Unit
Enable	BOOL	FALSE	TRUE, FALSE	-

As long as the Enable input is TRUE (positive state), the value of the status parameter is read continuously.

•				
Name	Data Type	Default Value	Value Range	Unit
Valid	BOOL	FALSE	FALSE, TRUE	-
Error	BOOL	FALSE	FALSE, TRUE	-
ErrorID	DINT	0	See chapter 10.2 Motion Control Functionblocks Error Codes	-
Errorstop	BOOL	FALSE	FALSE, TRUE	-
Disabled	BOOL	FALSE	FALSE, TRUE	-
Homing	BOOL	FALSE	FALSE, TRUE	-
Stopping	BOOL	FALSE	FALSE, TRUE	-
StandStill	BOOL	FALSE	FALSE, TRUE	-
DiscreteMotion	BOOL	FALSE	FALSE, TRUE	-
ContinuousMotion	BOOL	FALSE	FALSE, TRUE	-

A successful update of the axis status is signalled by a positive state (TRUE) of the output Valid. An error during execution of the function block is signalled at the output Error. Additionally an ErrorID allows to get more information about the error cause.

The figure on the next page shows the possible states.

Figure 53: ReadStatus, possible States

Note 1: In this state Errorstop or Stopping, all Function Blocks can be called, although they will not be executed, except MC_Reset and Error - they will generate the transition to StandStill or Errorstop respectively.

Note 2: Power.Enable = TRUE and there is no error in the axis

Note 3: MC_Stop.Done

Note 4: MC_Power.Enable = FALSE

7.1.4 Function Block MC_MoveAbsolute

The Function Block MC_MoveAbsolute commands a controlled motion to a specified absolute position. This motion is using a trapezoidal or sinusoidal profile.

Figure 54: MC_MoveAbsolute

Input-/Output Variable

Name	Data Type	Elements	Element Type	Default Value	Value Range
Axis	AXIS_REF	AxisNo	USINT	0	0 to 31

The input/output variable Axis defines the addressed axis. With the "Network Configuration" tool the axis number of the internal and the external axis can be set freely within the allowed value range.

Input Variables

Name	Data Type	Default Value	Value Range	Unit
Execute	BOOL	FALSE	TRUE, FALSE	-
Position	DINT	0	- 2'147'483'648 to + 2'147'483'647	qc = increments of the encoder
Velocity	UDINT	0	0 to 25'000	rpm
Acceleration	UDINT	0	0 to 4'294'967'295	rpm/s
Deceleration	UDINT	0	0 to 4'294'967'295	rpm/s

A positive edge of the input signal Execute triggers a new absolute movement. The movement is using a profile corresponding to the values Velocity, Acceleration and Deceleration. The variable Position is defined in the unit quadcount [qc].

Output Variables

Name	Data Type	Default Value	Value Range	Unit
Done	BOOL	FALSE	FALSE, TRUE	-
Abort	BOOL	FALSE	FALSE, TRUE	-
Error	BOOL	FALSE	FALSE, TRUE	-
ErrorID	DINT	0	See chapter 10.2 Motion Control Functionblocks Error Codes	-

maxon motor

EPOS P Positioning Controller

A successful positioning is signalled with a positive value (TRUE) at the output Done. If another function block instance is executing a movement using the same axis, the execution of this function block instance is immediately stopped. In this case a positive state (TRUE) at the output Abort is set. An error during the movement is signalled (TRUE) using the output Error. Additionally an ErrorID allows to get more information about the error cause.

The outputs Done, Abort and Error are reset with a negative state (FALSE) at the input Execute. If the input Execute is reset before the end of the positioning, the outputs Done, Abort and Error are showing the status of the positioning during one cycle. After one cycle the outputs are reset to negative state (FALSE).

The parameter values Velocity, Acceleration, Deceleration must only be defined at the first call of the function block. Calling the same function block for one more time the values don't have to be defined. In this case the values of the first call are used.

The figure below shows two cases of a calling sequence. The first sequence shows two complete movements. The second function block instance is started after the complete termination of the first movement. The second sequence shows an interrupted movement. Setting the variable Test triggers the start of the second function block instance during execution of the first one.

Figure 55: Move Absolute Sequence

Function Block Call using the programming language ST

Important

7.1.5 Function Block MC_MoveRelative

The Function Block MC_MoveRelative commands a controlled motion of a specified distance relative to the actual position at the time of the execution. This movement is using a trapezoidal or sinusoidal profile. The new absolute target position is defined by the Distance added to the actual position.

Figure 56: MC_MoveRelative

Input/Output Variable

Name	Data Type	Elements	Element Type	Default Value	Value Range
Axis	AXIS_REF	AxisNo	USINT	0	0 to 31

The input/output variable Axis defines the addressed axis. With the "Network Configuration" tool the axis number of the internal and the external axis can be set freely within the allowed value range.

Input Variables

Name	Data Type	Default Value	Value Range	Unit
Execute	BOOL	FALSE	TRUE, FALSE	-
Distance	DINT	0	- 2'147'483'648 to + 2'147'483'647	qc
Velocity	UDINT	0	0 to 25'000	rpm
Acceleration	UDINT	0	0 to 4'294'967'295	rpm/s
Deceleration	UDINT	0	0 to 4'294'967'295	rpm/s

A positive edge of the input signal Execute triggers a new relative movement. The defined distance is added to the actual position and commanded as a new absolute target position. The movement is using a profile corresponding to the values Velocity, Acceleration, Deceleration. The variable Distance is defined in the unit quadcount [qc].

Output Variables

Name	Data Type	Default Value	Value Range	Unit
Done	BOOL	FALSE	FALSE, TRUE	-
Abort	BOOL	FALSE	FALSE, TRUE	-
Error	BOOL	FALSE	FALSE, TRUE	-
ErrorID	DINT	0	See chapter 10.2 Motion Control Functionblocks Error Codes	-

maxon motor

EPOS P Positioning Controller

A successful positioning is signalled with a positive value (TRUE) at the output Done. If another function block instance is executing a movement using the same axis, the execution of this function block instance is immediately stopped. In this case a positive state (TRUE) at the output Abort is set. An error during the movement is signalled (TRUE) using the output Error. Additionally an ErrorID allows to get more information about the error cause.

The outputs Done, Abort and Error are reset with a negative state (FALSE) at the input Execute. If the input Execute is reset before the end of the positioning, the outputs Done, Abort and Error are showing the status of the positioning during one cycle. After one cycle the outputs are reset to negative state (FALSE). The parameter values Velocity, Acceleration, Deceleration must only be defined at the first call of the function block. Calling the same function block for one more time the values do not have to be defined. In this case the values of the first call are used.

The figure below shows two cases of a calling sequence. The first sequence shows two complete movements. The second function block instance is started after the complete termination of the first movement. The second sequence shows an interrupted movement. Setting the variable Test triggers the start of the second function block instance during execution of the first one.

Figure 57: Move Relative Sequence

Function Block Call using the programming language ST

Important

7.1.6 Function Block MC_MoveVelocity

The Function Block MC_MoveVelocity commands a never ending controlled motion at a specified velocity using the trapezoidal or the sinusoidal acceleration profile.

Figure 58: MC_MoveVelocity

Input/Output Variable

Name	Data Type	Elements	Element Type	Default Value	Value Range
Axis	AXIS_REF	AxisNo	USINT	0	0 to 31

The input/output variable Axis defines the addressed axis. With the "Network Configuration" tool the axis number of the internal and the external axis can be set freely within the allowed value range.

Input Variables

Name	Data Type	Default Value	Value Range	Unit
Execute	BOOL	FALSE	TRUE, FALSE	-
Velocity	UDINT	0	0 to 25'000	rpm
Acceleration	UDINT	0	0 to 4'294'967'295	rpm/s
Deceleration	UDINT	0	0 to 4'294'967'295	rpm/s
Direction	Enum MC_Direction	MCpositive	MCpositive MCnegative	-

A positive edge of the input signal Execute triggers a new velocity movement. This continuous movement is defined by the input variable Velocity. The function block MC_Stop must be used to stop the movement. Another call of MC_MoveVelocity changes the active velocity. The input variable Velocity has to be a positive value higher than 0. The movement direction is defined by the variable Direction. The velocity profile is executed using the variable values of Acceleration and Deceleration.

Output Variables

Name	Data Type	Default Value	Value Range	Unit
InVelocity	BOOL	FALSE	FALSE, TRUE	-
Abort	BOOL	FALSE	FALSE, TRUE	-
Error	BOOL	FALSE	FALSE, TRUE	-
ErrorID	DINT	0	See chapter 10.2 Motion Control Functionblocks Error Codes	-

maxon motor

EPOS P Positioning Controller

Reaching the commanded velocity is signalled by the output InVelocity. If another function block instance is executing a movement using the same axis, the execution of this function block instance is immediately stopped. In this case a positive state (TRUE) at the output Abort is set. An error during the movement is signalled (TRUE) using the output Error. Additionally an ErrorID allows to get more information about the error cause.

The outputs InVelocity, Abort and Error are reset with a negative state (FALSE) at the input Execute. If the input Execute is reset before the end of the positioning, the outputs InVelocity, Abort and Error are showing the status of the positioning during one cycle. After one cycle the outputs are reset to negative state (FALSE).

The parameter values Acceleration, Deceleration, Direction must only be defined at the first call of the function block. Calling the same function block for one more time the values don't have to be defined. In this case the values of the first call are used.

The figure below shows two cases of a calling sequence. The first sequence shows two complete movements. The second function block instance is started after the complete termination of the first movement. The second sequence shows an interrupted movement. Setting the variable Test triggers the start of the second function block instance during execution of the first one.

Figure 59: Move Velocity Sequence

Function Block Call using the programming language ST

Important

7.1.7 Function Block MC_Home

The Function Block MC_Home commands the axis to perform the homing procedure. The absolute home position is searched using one of the available homing methods (see EPOS Firmware Specification).

Figure 60: MC_Home

Input/Output Variable

Name	Data Type	Elements	Element Type	Default Value	Value Range
Axis	AXIS_REF	AxisNo	USINT	0	0 to 31

The input/output variable Axis defines the addressed axis. With the "Network Configuration" tool the axis number of the internal and the external axis can be set freely within the allowed value range.

Input Variables

Name	Data Type	Default Value	Value Range	Unit
Execute	BOOL	FALSE	TRUE, FALSE	-
Position	DINT	0	- 2'147'483'648 to + 2'147'483'647	dc

A positive edge of the input signal Execute triggers a new homing procedure. The input variable 'Position' defines the new home position value after a successful homing procedure. Additional parameters for a homing procedure have to be configured using the function block MC_WriteParameter. Have a look at the document EPOS Firmware Specification for further information about homing parameters.

Output Variables

Name	Data Type	Default Value	Value Range	Unit
Done	BOOL	FALSE	FALSE, TRUE	-
Abort	BOOL	FALSE	FALSE, TRUE	-
Error	BOOL	FALSE	FALSE, TRUE	-
ErrorID	DINT	0	See chapter 10.2 Motion Control Functionblocks Error Codes	-

A homing procedure has to be started when the axis is not moving. If the axis is moving at the start of the function block MC_Home an error is generated.

A successful terminated homing procedure is signalled by the output Done. If another function block instance is starting a homing procedure using the same axis, the execution of the first function block instance is immediately stopped. In this case a positive state (TRUE) at the output Abort is set. An error during the homing procedure is signalled (TRUE) using the output Error. Additionally the ErrorID allows to get more information about the error cause.

The outputs Done, Abort and Error are reset with a negative state (FALSE) at the input Execute. If the input Execute is reset before the end of the positioning the outputs Done, Abort and Error are showing the status of the positioning during one cycle. After one cycle the outputs are reset to negative state (FALSE).

The parameter value Position must be defined only at the first call of the function block. Calling the same function block for one more time the values don't have to be defined. In this case the values of the first call are used.

Function Block Call using the programming language ST

(* Variable Declaration *)
VAR
myAxis : AXIS_REF := (AxisNo := 0);
fbHome : MC_Home; (* fbHome is instance of MC_Home *)
Start : BOOL := FALSE;
END VAR

(* Call function block instance *)
fbHome(Axis := myAxis, Execute := Start, Position := 0);

7.1.8 Function Block MC_Stop

The Function Block MC_Stop commands a controlled motion stop of the axis using a trapezoidal or sinusoidal deceleration profile.

Figure 61: MC_Stop

Input/Output Variable

Name	Data Type	Elements	Element Type	Default Value	Value Range
Axis	AXIS_REF	AxisNo	USINT	0	0 to 31

The input/output variable Axis defines the addressed axis. With the "Network Configuration" tool the axis number of the internal and the external axis can be set freely within the allowed value range.

Input Variables

Name	Data Type	Default Value	Value Range	Unit
Execute	BOOL	FALSE	TRUE, FALSE	-
Deceleration	UDINT	0	0 to 4'294'967'295	rpm/s

A positive edge at the input Execute stops the axis using a defined deceleration profile.

Output Variables

Name	Data Type	Default Value	Value Range	Unit
Done	BOOL	FALSE	FALSE, TRUE	-
Error	BOOL	FALSE	FALSE, TRUE	-
ErrorID	DINT	0	See chapter 10.2 Motion Control Functionblocks Error Codes	-

Successfully stopping the axis is signalled by the output Done. An error during the deceleration profile is signalled (TRUE) using the output Error. Additionally an ErrorID allows to get more information about the error cause.

The outputs Done and Error are reset setting a negative state (FALSE) to the input Execute. If the input Execute is reset before the end of the positioning the outputs Done and Error are showing the status of the stopping during one cycle. After one cycle the outputs are reset to negative state (FALSE).

Function Block Call using the programming language ST

7.1.9 Function Block MC_ReadParameter

The Function Block MC_ReadParameter returns an axis parameter value.

Figure 62: MC_ReadParameter

Input/Output Variable

Name	Data Type	Elements	Element Type	Default Value	Value Range
Axis	AXIS_REF	AxisNo	USINT	0	0 to 31

The input/output variable Axis defines the addressed axis. With the "Network Configuration" tool the axis number of the internal and the external axis can be set freely within the allowed value range.

Input Variables

Name	Data Type	Default Value	Value Range	Unit
Enable	BOOL	FALSE	TRUE, FALSE	-
ParameterNumber	UDINT	0	PLCopen parameter:1CommandedPosition2SWLimitPos3SWLimitNeg7MaxPositionLag8MaxVelocitySystem9MaxVelocityAppl10ActualVelocity11CommandedVelocity13MaxAccelerationAppl15MaxDecelerationAppl	-
			CANopen objects:	
			16#xxxxyyzzmultiplexer (hex)xxxx:Object Index (hex)yy:Object Sub-index (hex)zz:Object Length (hex)	

As long as the Enable input is TRUE (positive state), the value of a specified parameter is read continuously. The input ParameterNumber is defining the parameter to be read. Beside the listed parameter, CANopen objects can be read using the ParameterNumber as a multiplexer. So it's possible to read all EPOS objects from the object dictionary (see document Firmware Specification).

The multiplexer is composed of 2 bytes object index (Byte 3 and 2), 1 byte object sub-index (Byte 1) and 1 byte object length (Byte 0).

ParameterNumber = 16#207C0102

Multiplexer Example

Name	= Analog Input 1 of EPOS
Object Index	= 16#207C
Object Sub-index	= 16#01
Object Length	= 16#02

Output Variables

Name	Data Type	Default Value	Value Range	Unit
Done	BOOL	FALSE	FALSE, TRUE	-
Error	BOOL	FALSE	FALSE, TRUE	-
ErrorID	DINT	0	See chapter 10.2 Motion Control Functionblocks Error Codes	-
Value	UDINT	0	0 to 4'294'967'295	-

A successful read operation is signalled by the output Done. The value can be read from the output Value. An error during execution of the function block is signalled at the output Error. Additionally an ErrorID allows to get more information about the error cause.

Function Block Call using the programming language ST

```
(* Variable Declaration *)
VAR
myAxis : AXIS_REF := (AxisNo := 0);
fbReadP : MC_ReadParameter; (* fbReadP is instance of MC_ReadParameter *)
END_VAR
(* Function Block call for updating the actual velocity *)
fbReadP(Axis := myAxis, Enable := TRUE, ParameterNumber := 10);
(* Function Block call for reading the CANopen object Analog Input 1*)
fbReadP(Axis := myAxis, Enable := TRUE, ParameterNumber := 16#207C0102);
```


Important

7.1.10 Function Block MC_ReadBoolParameter

The Function Block MC_ReadBoolParameter returns an axis parameter value with datatype boolean.

Figure 63: MC_ReadBoolParameter

Input/Output Variable

Name	Data Type	Elements	Element Type	Default Value	Value Range
Axis	AXIS_REF	AxisNo	USINT	0	0 to 31

The input/output variable Axis defines the addressed axis. With the "Network Configuration" tool the axis number of the internal and the external axis can be set freely within the allowed value range.

Input Variables

Name	Data Type	Default Value	Value Range	Unit
Enable	BOOL	FALSE	TRUE, FALSE	-
ParameterNumber	UDINT	0	 EnableLimitPos EnableLimitNeg EnablePosLagMonitoring 	-

As long as the Enable input is TRUE (positive state), the value of a specified boolean parameter is read continuously. The input ParameterNumber is defining the parameter to be read.

Output Variables

Name	Data Type	Default Value	Value Range	Unit
Done	BOOL	FALSE	FALSE, TRUE	-
Error	BOOL	FALSE	FALSE, TRUE	-
ErrorID	DINT	0	See chapter 10.2 Motion Control Functionblocks Error Codes	-
Value	BOOL	0	FALSE, TRUE	-

A successful read operation is signalled by the output Done. The value can be read from the output Value. An error during execution of the function block is signalled at the output Error. Additionally an ErrorID allows to get more information about the error cause.

Function Block Call using the programming language ST

Important

7.1.11 Function Block MC_WriteParameter

The Function Block MC_WriteParameter modifies the value of an axis parameter.

Figure 64: MC_WriteParameter

Input/Output Variable

Name	Data Type	Elements	Element Type	Default Value	Value Range
Axis	AXIS_REF	AxisNo	USINT	0	0 to 31

The input/output variable Axis defines the addressed axis. With the "Network Configuration" tool the axis number of the internal and the external axis can be set freely within the allowed value range.

Input	Variables
-------	-----------

Name	Data Type	Default Value	Value Range	Unit
Execute	BOOL	FALSE	TRUE, FALSE	-
ParameterNumber	UDINT	0	PLCopen parameter: 2 SWLimitPos 3 SWLimitNeg 7 MaxPositionLag 8 MaxVelocitySystem 9 MaxVelocityAppl 11 CommandedVelocity 13 MaxAccelerationAppl 15 MaxDecelerationAppl 15 MaxDecelerationAppl 16#xxxxyyzz multiplexer (hex) xxxx: Object Index (hex)	-
			zz: Object Sub-index (nex)	
Value	UDINT	0	0 to 4'294'967'295	-

A positive edge at the input Execute is triggering a write operation of the specified parameter. The input ParameterNumber is defining the parameter to be written. Beside the listed parameter, CANopen objects can be written using the ParameterNumber as a multiplexer. So it is possible to write all EPOS objects to the object dictionary (see document Firmware Specification).

The multiplexer is composed of 2 bytes object index (Byte 3 and 2), 1 byte object sub-index (Byte 1) and 1 byte object length (Byte 0).

Multiplexer Example

ParameterNumber = 16#20780102 Name = Digital Outputs of EPOS Object Index = 16#2078

Object Sub-index = 16#01 Object Length = 16#02

Output Variables

Name	Data Type	Default Value	Value Range	Unit
Done	BOOL	FALSE	FALSE, TRUE	-
Error	BOOL	FALSE	FALSE, TRUE	-
ErrorID	DINT	0	See chapter 10.2 Motion Control Functionblocks Error Codes	-

A successful write operation is signalled by the output Done. An error during execution of the function block is signalled at the output Error. Additionally an ErrorID allows to get more information about the error cause.

Function Block Call using the programming language ST

Important

7.1.12 Function Block MC_ReadActualPosition

The Function Block MC_ReadActualPosition returns the actual position of an axis.

Figure 65: MC_ReadActualPosition

Input/Output Variable

Name	Data Type	Elements	Element Type	Default Value	Value Range
Axis	AXIS_REF	AxisNo	USINT	0	0 to 31

The input/output variable Axis defines the addressed axis. With the "Network Configuration" tool the axis number of the internal and the external axis can be set freely within the allowed value range.

Input Variable

Name	Data Type	Default Value	Value Range	Unit
Enable	BOOL	FALSE	TRUE, FALSE	-

As long as the Enable input is TRUE (positive state), the value of the actual position is read continuously.

Output Variables

Name	Data Type	Default Value	Value Range	Unit
Done	BOOL	FALSE	FALSE, TRUE	-
Error	BOOL	FALSE	FALSE, TRUE	-
ErrorID	DINT	0	See chapter 10.2 Motion Control Functionblocks Error Codes	-
Position	DINT	0	- 2'147'483'648 [min(DINT)] to + 2'147'483'647 [max(DINT)]	qc (Increments of the encoder)

A successful read operation is signalled by the output Done. The actual position can be read from the output Position. An error during execution of the function block is signalled at the output Error. Additionally an ErrorID allows to get more information about the error cause.

Function Block Call using the programming language ST

Important

7.1.13 Function Block MC_ReadActualVelocity

The Function Block MC_ReadActualVelocity returns the actual velocity of an axis.

Figure 66: MC_ReadActualVelocity

Input/Output Variable

Name	Data Type	Elements	Element Type	Default Value	Value Range
Axis	AXIS_REF	AxisNo	USINT	0	0 to 31

The input/output variable Axis defines the addressed axis. With the "Network Configuration" tool the axis number of the internal and the external axis can be set freely within the allowed value range.

Input Variable

Name	Data Type	Default Value	Value Range	Unit
Enable	BOOL	FALSE	TRUE, FALSE	-

As long as the Enable input is TRUE (positive state), the value of the actual velocity is read continuously.

Output Variables

Name	Data Type	Default Value	Value Range	Unit
Done	BOOL	FALSE	FALSE, TRUE	-
Error	BOOL	FALSE	FALSE, TRUE	-
ErrorID	DINT	0	See chapter 10.2 Motion Control Functionblocks Error Codes	-
Velocity	DINT	0	- 2'147'483'648 [min(DINT)] to + 2'147'483'647 [max(DINT)]	rpm

A successful read operation is signalled by the output Done. The actual velocity can be read from the output Velocity. An error during execution of the function block is signalled at the output Error. Additionally an ErrorID allows to get more information about the error cause.

Function Block Call using the programming language ST

Important

7.1.14 Function Block MC_ReadActualCurrent

The Function Block MC_ReadActualCurrent returns the actual current of an axis.

Figure 67: MC_ReadActualCurrent

Input/Output Variable

Name	Data Type	Elements	Element Type	Default Value	Value Range
Axis	AXIS_REF	AxisNo	USINT	0	0 to 31

The input/output variable Axis defines the addressed axis. With the "Network Configuration" tool the axis number of the internal and the external axis can be set freely within the allowed value range.

Input Variable

Name	Data Type	Default Value	Value Range	Unit
Enable	BOOL	FALSE	TRUE, FALSE	-

As long as the Enable input is TRUE (positive state), the value of the actual current is read continuously.

Output Variables

Name	Data Type	Default Value	Value Range	Unit
Done	BOOL	FALSE	FALSE, TRUE	-
Error	BOOL	FALSE	FALSE, TRUE	-
ErrorID	DINT	0	See chapter 10.2 Motion Control Functionblocks Error Codes	-
Current	INT	0	- 32768 [min(INT)] to + 32767 [max(INT)]	mA

A successful read operation is signalled by the output Done. The actual current can be read from the output Current. An error during execution of the function block is signalled at the output Error. Additionally an ErrorID allows to get more information about the error cause.

Function Block Call using the programming language ST

Important

7.1.15 Function Block MC_ReadAxisError

The Function Block MC_ReadAxisError returns the first entry in the error history of the EPOS device.

Figure 68: MC_ReadAxisError

Input Variable

Name	Data Type	Default Value	Value Range	Unit
Enable	BOOL	FALSE	TRUE, FALSE	-

As long as the Enable input is TRUE (positive state), the value of the first entry in the error history of the EPOS is read continuously.

Output Variables

Name	Data Type	Default Value	Value Range	Unit
Done	BOOL	FALSE	FALSE, TRUE	-
Error	BOOL	FALSE	Always FALSE	-
ErrorID	DINT	0	EPOS device Error Code [7]	-

A successful read operation is signalled by the output Done. An error during execution of the function block is signalled at the output Error. In case of a successful operation (Error = FALSE) the output ErrorID contains the axis error (see [7]).

7.2 Maxon Utility Function Blocks

7.2.1 Function Block MU_GetAllDigitalInputs

The Function Block MU_GetAllDigitalInputs returns the state of all digital inputs.

Input/Output Variable

Name	Data Type	Elements	Element Type	Default Value	Value Range
Axis	AXIS_REF	AxisNo	USINT	0	0 to 31

The input/output variable Axis defines the addressed axis. With the "Network Configuration" tool the axis number of the internal and the external axis can be set freely within the allowed value range.

Input Variable

Name	Data Type	Default Value	Value Range	Unit
Enable	BOOL	FALSE	TRUE, FALSE	-

As long as the Enable input is TRUE (positive state), the status of all digital inputs is read continuously.

Programming Reference

Output Variables

Name	Data Type	Default Value	Value Range	Unit
Done	BOOL	FALSE	FALSE, TRUE	-
Error	BOOL	FALSE	FALSE, TRUE	-
ErrorID	DINT	0	See chapter 10.2 Motion Control	-
			Functionblocks Error Codes	
GenPurpA	BOOL	FALSE	FALSE, TRUE	-
GenPurpB	BOOL	FALSE	FALSE, TRUE	-
GenPurpC	BOOL	FALSE	FALSE, TRUE	-
GenPurpD	BOOL	FALSE	FALSE, TRUE	-
GenPurpE	BOOL	FALSE	FALSE, TRUE	-
GenPurpF	BOOL	FALSE	FALSE, TRUE	-
GenPurpG	BOOL	FALSE	FALSE, TRUE	-
GenPurpH	BOOL	FALSE	FALSE, TRUE	-
NegLimitSwitch	BOOL	FALSE	FALSE, TRUE	-
PosLimitSwitch	BOOL	FALSE	FALSE, TRUE	-
HomeSwitch	BOOL	FALSE	FALSE, TRUE	-
PositionMarker	BOOL	FALSE	FALSE, TRUE	-
DriveEnable	BOOL	FALSE	FALSE, TRUE	-

A successful read operation is signalled by the output Done. An error during execution of the function block is signalled at the output Error. Additionally an ErrorID allows to get more information about the error cause.

7.2.2 Function Block MU_GetDigitalInput

The Function Block MU_GetDigitalInput returns the state of a specific digital input.

Figure 70: MU_GetDigitalInput

Input/Output Variable

Name	Data Type	Elements	Element Type	Default Value	Value Range
Axis	AXIS_REF	AxisNo	USINT	0	0 to 31

The input/output variable Axis defines the addressed axis. With the "Network Configuration" tool the axis number of the internal and the external axis can be set freely within the allowed value range.

Input Variable

Name	Data Type	Default Value	Value Range		Unit
Enable	BOOL	FALSE	TRUE, FALSE		-
Purpose	INT	0	NegLimitSwitch PosLimitSwitch HomeSwitch PositionMarker Enable GenPurpH GenPurpG GenPurpF GenPurpE GenPurpD GenPurpC GenPurpB GenPurpA	= 0, = 1, = 2, = 3, = 4, = 8, = 9, = 10, = 11, = 12, = 13, = 14, = 15	-

As long as the Enable input is TRUE (positive state), the status of a digital input is read continuously. The input variable Purpose defines the digital input to be read.

Programming Reference

Output Variables

Name	Data Type	Default Value	Value Range	Unit	
Done	BOOL	FALSE	FALSE, TRUE	-	
Error	BOOL	FALSE	FALSE, TRUE	-	
ErrorID	DINT	0	See chapter 10.2 Motion Control Functionblocks Error Codes	-	
State	BOOL	FALSE	FALSE, TRUE	-	

A successful read operation is signalled by the output Done. An error during execution of the function block is signalled at the output Error. Additionally an ErrorID allows to get more information about the error cause.

Function Block Call using the programming language ST

7.2.3 Function Block MU_GetAnalogInput

The Function Block MU_GetAnalogInput returns the value of a specific analog input.

Input/Output Variable

Name	Data Type	Elements	Element Type	Default Value	Value Range
Axis	AXIS_REF	AxisNo	USINT	0	0 to 31

The input/output variable Axis defines the addressed axis. With the "Network Configuration" tool the axis number of the internal and the external axis can be set freely within the allowed value range.

Input Variable

Name	Data Type	Default Value	Value Range	Unit
Enable	BOOL	FALSE	TRUE, FALSE	-
Number	USINT	0	1, 2	-

As long as the Enable input is TRUE (positive state), the value of an analog input is read continuously. The input variable Number defines the analog input to be read.

Output Variables

Name	Data Type	Default Value	Value Range	Unit
Done	BOOL	FALSE	FALSE, TRUE	-
Error	BOOL	FALSE	FALSE, TRUE	-
ErrorID	DINT	0	See chapter 10.2 Motion Control Functionblocks Error Codes	-
Value	DINT	0	0 to 5'000	mV

A successful read operation is signalled by the output Done. The value can be read from the output Value. An error during execution of the function block is signalled at the output Error. Additionally an ErrorID allows to get more information about the error cause.

7.2.4 Function Block MU_SetAllDigitalOutputs

The Function Block MU_SetAllDigitalOutputs modifies the value of all digital outputs.

Input/Output Variable

Name	Data Type	Elements	Element Type	Default Value	Value Range
Axis	AXIS_REF	AxisNo	USINT	0	0 to 31

The input/output variable Axis defines the addressed axis. With the "Network Configuration" tool the axis number of the internal and the external axis can be set freely within the allowed value range.

Input Variable

Name	Data Type	Default Value	Value Range	Unit
Execute	BOOL	FALSE	TRUE, FALSE	-
GenPurpA	BOOL	FALSE	TRUE, FALSE	-
GenPurpB	BOOL	FALSE	TRUE, FALSE	-
GenPurpC	BOOL	FALSE	TRUE, FALSE	-
GenPurpD	BOOL	FALSE	TRUE, FALSE	-

A positive edge at the input Execute triggers a write operation of all digital outputs. The inputs GenPurpA, GenPurpB, GenPurpC and GenPurpD contain the new output value.

Output Variables

Name	Data Type	Default Value	Value Range	Unit
Done	BOOL	FALSE	FALSE, TRUE	-
Error	BOOL	FALSE	FALSE, TRUE	-
ErrorID	DINT	0	See chapter 10.2 Motion Control	-
			Functionblocks Error Codes	

A successful read operation is signalled by the output Done. An error during execution of the function block is signalled at the output Error. Additionally an ErrorID allows to get more information about the error cause.

7.2.5 Function Block MU_GetDeviceErrorCount

The Function Block MU_GetDeviceErrorCount returns the number of actual errors.

Figure 73: MU_GetDeviceErrorCount

Input/Output Variable

Name	Data Type	Elements	Element Type	Default Value	Value Range
Axis	AXIS_REF	AxisNo	USINT	0	0 to 31

The input/output variable Axis defines the addressed axis. With the "Network Configuration" tool the axis number of the internal and the external axis can be set freely within the allowed value range.

Input Variable

Name	Data Type	Default Value	Value Range	Unit
Enable	BOOL	FALSE	TRUE, FALSE	-

As long as the Enable input is TRUE (positive state), the number of existing errors is read continuously.

Output Variables

Name	Data Type	Default Value	Value Range	Unit
Done	BOOL	FALSE	FALSE, TRUE	-
Error	BOOL	FALSE	FALSE, TRUE	-
ErrorID	DINT	0	See chapter 10.2 Motion Control Functionblocks Error Codes	-
Count	USINT	0	0 to 255	-

A successful read operation is signalled by the output Done. The actual number of existing errors can be read from the output Count. An error during execution of the function block is signalled at the output Error. Additionally an ErrorID allows to get more information about the error cause.

7.2.6 Function Block MU_GetDeviceError

The Function Block MU_GetDeviceError returns the error code of a specific entry in the error history.

Figure 74: MU_GetDeviceError

Input/Output Variable

Name	Data Type	Elements	Element Type	Default Value	Value Range
Axis	AXIS_REF	AxisNo	USINT	0	0 to 31

The input/output variable Axis defines the addressed axis. With the "Network Configuration" tool the axis number of the internal and the external axis can be set freely within the allowed value range.

Input Variable

Name	Data Type	Default Value	Value Range	Unit
Enable	BOOL	FALSE	TRUE, FALSE	-
Number	USINT	1	1 to Count	-
			See chapter 7.2.5 Function Block	
			MU GetDeviceErrorCount	

As long as the Enable input is TRUE (positive state), the error code of a specific entry in the error history is read continuously. The input Number defines the entry in the error history to be read.

Output Variables

Name	Data Type	Default Value	Value Range	Unit
Done	BOOL	FALSE	FALSE, TRUE	-
Error	BOOL	FALSE	FALSE, TRUE	-
ErrorID	DINT	0	See chapter 10.2 Motion Control Functionblocks Error Codes	-
DeviceError	UDINT	0	0 to 4 294 967 265	-

A successful read operation is signalled by the output Done. The error code can be read from the output DeviceError. An error during execution of the function block is signalled at the output Error. Additionally an ErrorID allows to get more information about the error cause.

```
(* Variable Declaration *)
VAR
myAxis : AXIS_REF := (AxisNo := 0);
fbGetDeviceError : MU_GetDeviceError; (* fbGetDeviceError is instance of MU_GetDeviceError *)
END_VAR
(* Function Block Call for reading the error code of the second entry in the error history *)
fbGetDeviceErrorCount(Axis := myAxis, Enable := TRUE, Number := 2);
```
7.2.7 Function Block MU_GetObject

The Function Block MU_GetObject returns the value of an EPOS object.

Figure 75: MU_GetObject

Input/Output Variable

Name	Data Type	Elements	Element Type	Default Value	Value Range
Axis	AXIS_REF	AxisNo	USINT	0	0 to 31

The input/output variable Axis defines the addressed axis. With the "Network Configuration" tool the axis number of the internal and the external axis can be set freely within the allowed value range.

Input Variable

Name	Data Type	Default Value	Value Range	Unit
Execute	BOOL	FALSE	TRUE, FALSE	-
Index	UINT	0	0 to 65 535	-
SubIndex	USINT	0	0 to 255	

A positive edge at the input Execute triggers a read operation of a specific EPOS object. The inputs Index and SubIndex define the object to be read.

Output Variables

Name	Data Type	Default Value	Value Range	Unit
Done	BOOL	FALSE	FALSE, TRUE	-
Error	BOOL	FALSE	FALSE, TRUE	-
ErrorID	DINT	0	See chapter 10.2 Motion Control Functionblocks Error Codes	-
Value	UDINT	0	0 to 4 294 967 265	-

A successful read operation is signalled by the output Done. The value of the object can be read from the output Value. An error during execution of the function block is signalled at the output Error. Additionally an ErrorID allows to get more information about the error cause.

```
(* Variable Declaration *)
VAR
myAxis : AXIS_REF := (AxisNo := 0);
fbGetObject : MU_GetObject; (* fbGetObject is instance of MU_GetObject *)
END_VAR
(* Function Block Call for reading the software number of the attached EPOS (object: 0x2003-01 *)
fbGetObject (Axis := myAxis, Execute := TRUE, Index := 16#2003, SubIndex := 16#01);
```

7.2.8 Function Block MU_SetObject

The Function Block MU_SetObject modifies the value of an EPOS object.

Figure 76: MU_SetObject

Input/Output Variable

Name	Data Type	Elements	Element Type	Default Value	Value Range
Axis	AXIS_REF	AxisNo	USINT	0	0 to 31

The input/output variable Axis defines the addressed axis. With the "Network Configuration" tool the axis number of the internal and the external axis can be set freely within the allowed value range.

Input Variable

Name	Data Type	Default Value	Value Range	Unit
Execute	BOOL	FALSE	TRUE, FALSE	-
Index	UINT	0	0 to 65 535	-
SubIndex	USINT	0	0 to 255	
Value	UDINT	0	0 to 4 294 967 265	-

A positive edge at the input Execute triggers a write operation of a specific EPOS object. The inputs Index and SubIndex define the object to be modified. The input Value contains the new object value.

Output Variables

Name	Data Type	Default Value	Value Range	Unit
Done	BOOL	FALSE	FALSE, TRUE	-
Error	BOOL	FALSE	FALSE, TRUE	-
ErrorID	DINT	0	See chapter 10.2 Motion Control Functionblocks Error Codes	-

A successful write operation is signalled by the output Done. An error during execution of the function block is signalled at the output Error. Additionally an ErrorID allows to get more information about the error cause.

7.2.9 Function Block MU_GetHomingParameter

The Function Block MU_GetHomingParameter returns the values of the EPOS homing objects.

Figure 77: MU_GetHomingParameter

Input/Output Variable

Name	Data Type	Elements	Element Type	Default Value	Value Range
Axis	AXIS_REF	AxisNo	USINT	0	0 to 31

The input/output variable Axis defines the addressed axis. With the "Network Configuration" tool the axis number of the internal and the external axis can be set freely within the allowed value range.

Input Variable

Name	Data Type	Default Value	Value Range	Unit
Enable	BOOL	FALSE	TRUE, FALSE	-

As long as the Enable input is TRUE (positive state), the values of the EPOS homing objects are read continuously.

Programming Reference

Output Variables

•					
Name	Data Type	Default Value	Value Range		Unit
Done	BOOL	FALSE	FALSE, TRUE		-
Error	BOOL	FALSE	FALSE, TRUE		-
ErrorID	DINT	0	See chapter 10.2 Motion Contr Functionblocks Error Codes	<u>ol</u>	-
Method	SINT	7	cNegLimitSwitchIndex cPosLimitSwitchIndex cHomeSwitchPosSpeedIndex cHomeSwitchNegSpeedIndex cNegLimitSwitch cPosLimitSwitch cHomeSwitchPosSpeed cHomeSwitchNegSpeed cIndexNegSpeed cIndexPosSpeed cActualPosition cCurThreshPosSpeedIndex cCurThreshNegSpeedIndex cCurThreshNegSpeed	$= 1, \\= 2, \\= 7, \\= 11, \\= 17, \\= 18, \\= 23, \\= 27, \\= 33, \\= 34, \\= 35, \\= -1, \\= -2, \\= -3, \\= -4$	-
Offset	DINT	0	-2147483648 to 2147483647		dc
SpeedSwitch	UDINT	100	0 to 4294967295		rpm
SpeedIndex	UDINT	10	0 to 4294967295		rpm
Acceleration	UDINT	1000	0 to 4294967295		rpm / s
CurrentThreshold	UINT	500	0 to depend on hardware		mA

A successful read operation is signalled by the output Done. An error during execution of the function block is signalled at the output Error. Additionally an ErrorID allows to get more information about the error cause. The values of the objects can be read from the outputs Method, Offset, SpeedSwitch, SpeedIndex, Acceleration and CurrentThreshold.

7.2.10 Function Block MU_SetHomingParameter

The Function Block MU_SetHomingParameter modifies the values of the EPOS homing objects.

Figure 78: MU_SetHomingParameter

Input/Output Variable

Name	Data Type	Elements	Element Type	Default Value	Value Range
Axis	AXIS_REF	AxisNo	USINT	0	0 to 31

The input/output variable Axis defines the addressed axis. With the "Network Configuration" tool the axis number of the internal and the external axis can be set freely within the allowed value range.

Name	Data Type	Default Value	Value Range		Unit
Execute	BOOL	FALSE	TRUE, FALSE		-
Method	SINT	7	cNegLimitSwitchIndex cPosLimitSwitchIndex cHomeSwitchPosSpeedIndex cHomeSwitchNegSpeedIndex cNegLimitSwitch cPosLimitSwitch cHomeSwitchPosSpeed cHomeSwitchNegSpeed cIndexNegSpeed cIndexPosSpeed cActualPosition cCurThreshPosSpeedIndex cCurThreshNegSpeedIndex cCurThreshNegSpeed	= 1, = 2, = 7, = 11, = 17, = 18, = 23, = 27, = 33, = 34, = 35, = -1, = -2, = -3, = -4	-
Offset	DINT	0	-2147483648 to 2147483647		qc
SpeedSwitch	UDINT	100	0 to 4294967295		rpm
SpeedIndex	UDINT	10	0 to 4294967295		rpm
Acceleration	UDINT	1000	0 to 4294967295		rpm / s
CurrentThreshold	UINT	500	0 to depend on hardware		mA

Input Variable

A positive edge at the input Execute triggers a write operation of the EPOS homing objects. The inputs Method, Offset, SpeedSwitch, SpeedIndex, Acceleration and CurrentThreshold contain the value of the parameters to be written.

maxon	motor
-------	-------

Programming Reference

Output Variables

EPOS P Positioning Controller

• • • • • • • • • • • • •					
Name	Data Type	Default Value	Value Range	Unit	
Done	BOOL	FALSE	FALSE, TRUE	-	
Error	BOOL	FALSE	FALSE, TRUE	-	
ErrorID	DINT	0	See chapter 10.2 Motion Control Functionblocks Error Codes	-	

A successful read operation is signalled by the output Done. An error during execution of the function block is signalled at the output Error. Additionally an ErrorID allows to get more information about the error cause.

(* Variable Declaration VAR myAxis fbSetHomingParameter	*) : AXIS_REF := (AxisNo := 0); : MU_SetHomingParameter; (* fbSetHomingParameter is instance of MU_SetHomingParameter *)
END_VAR	
(* Function Block Call fbSetHomingParameter(Ax SpeedIndex := 20, Accel	<pre>for writing the homing parameter *) is := myAxis, Execute := TRUE, Method :=11, Offset:= 200, SpeedSwitch := 150, eration := 2000, CurrentThreshold := 500);</pre>

7.2.11 Function Block MU_Selection

The Function Block MU_Selection selects between two values.

Figure 79: MU_Selection

Input Variables

Name	Data Type	Default Value	Value Range	Unit
In1	BOOL	FALSE	TRUE, FALSE	-
Value1	DINT	0	-2147483648 to 2147483647	-
In2	BOOL	FALSE	TRUE, FALSE	-
Value2	DINT	0	-2147483648 to 2147483647	-

With the input variables In1 and In2, one of the input variables Value1 or Value2 can be selected. If In1 and In2 are TRUE, In1 is prioritized.

Output Variables

Name	Data Type	Default Value	Value Range	Unit
Out	BOOL	FALSE	FALSE, TRUE	-
ValueOut	DINT	0	-2147483648 to 2147483647	-

The output variable Out indicates a valid value of the output variable ValueOut.

7.2.12 Function Block MU_GetBitState

The Function Block MU_GetBitState extracts the state of a specific bit.

Input Variables

Name	Data Type	Default Value	Value Range	Unit
Execute	BOOL	FALSE	TRUE, FALSE	-
Value	DINT	0	-2147483648 to 2147483647	-
BitNumber	USINT	0	0 to 255	-

A positive edge at the input Execute triggers a read operation of the state of a specific bit within the input variable Value. The input variable BitNumber defines the bit to be read

Output Variables

Name	Data Type	Default Value	Value Range	Unit
Done	BOOL	FALSE	FALSE, TRUE	-
Error	BOOL	FALSE	FALSE, TRUE	-
ErrorID	DINT	0	See chapter 10.2 Motion Control Functionblocks Error Codes	-
State	BOOL	FALSE	FALSE, TRUE	-

A successful operation is signalled by the output Done. An error during execution of the function block is signalled at the output Error. Additionally an ErrorID allows to get more information about the error cause. The state of the bit can be read from the output State.

7.2.13 Function Block MU_SetBitState

The Function Block MU_SetBitState modifies the state of a specific bit within a given value.

Figure 81: MU_SetBitState

Input/Output Variable

Name	Data Type	Default Value	Value Range	Unit
Value	DINT	0	-2147483648	-
			2147483647	

The input/output variable Value contains the value within a specific bit will be modified.

Input Variables

Name	Data Type	Default Value	Value Range	Unit
Execute	BOOL	FALSE	TRUE, FALSE	-
BitNumber	USINT	0	0 to 255	-
State	BOOL	FALSE	FALSE, TRUE	-

A positive edge at the input Execute triggers a write operation of the state of a specific bit within the input variable Value. The input variable BitNumber defines the bit to be written with the value in the input variable State.

Output Variables

Name	Data Type	Default Value	Value Range	Unit
Done	BOOL	FALSE	FALSE, TRUE	-
Error	BOOL	FALSE	FALSE, TRUE	-
ErrorID	DINT	0	See chapter 10.2 Motion Control Functionblocks Error Codes	-

A successful operation is signalled by the output Done. An error during execution of the function block is signalled at the output Error. Additionally an ErrorID allows to get more information about the error cause.

7.3 CANopen DS-301 Function Blocks

7.3.1 Function Block CAN_Nmt

With the Function Block CAN_Nmt the network management state of a CANopen device can be changed.

Figure 82: CAN_Nmt

Input Variables

Name	Data Type	Default Value	Value Range	Unit
Execute	BOOL	FALSE	TRUE, FALSE	-
Device	USINT	0	0 to 127	-
Port	USINT	0	0 internal port 1 external port	-
State	USINT	0	1 =Start Remote Node,2 =Stop Remote Node,128 =Enter Pre-Operational,129 =Reset Node,130 =Reset Communication	-

A positive edge of the input Execute is triggering the NMT service operation. The network management state of the defined device is changed. The input Device corresponds to the CAN Node-ID. A Device value of 0 changes the NMT state of all devices in the network selected by the input port. The input Port distinguishes between internal and external CAN network.

The NMT state machine is define by CANopen and is explained in the CANopen specification.

Output Variables

Name	Data Type	Default Value	Value Range	Unit
Done	BOOL	FALSE	FALSE, TRUE	-
Error	BOOL	FALSE	FALSE, TRUE	-
ErrorID	DINT	0	See chapter 10.2 Motion Control	-
			Functionblocks Error Codes	

A successful operation is signalled by the output Done. An error during execution of the function block is signalled at the output Error. Additionally an ErrorID allows to get more information about the error cause.

```
(* Variable Declaration *)
VAR
fbNmt : CAN_Nmt; (* fbNmt is instance of CAN_Nmt *)
END_VAR
(* Function Block call for starting all nodes *)
fbNmt(Execute := TRUE, Device := 0, Port := 0, State := 1);
```

7.3.2 Function Block CAN_SdoRead

With the Function Block CAN_SdoRead a CANopen object can be read using the SDO protocol.

Figure 83: CAN_SdoRead

Input Variables

Name	Data Type	Default Value	Value Range	Unit
Enable	BOOL	FALSE	TRUE, FALSE	-
Device	USINT	0	0 to 127	-
Port	USINT	0	0 internal port 1 external port	-
Index	UINT	0	UINT	-
Sub-index	USINT	0	USINT	-

As long as the Enable input is TRUE (positive state), the value of a specified CANopen object is read continuously. The object is specified by the inputs Index and Sub-index. The input Device corresponds to the CAN Node-ID. The input Port distinguishes between internal and external CAN network.

Output Variables

Name	Data Type	Default Value	Value Range	Unit
Done	BOOL	FALSE	FALSE, TRUE	-
Error	BOOL	FALSE	FALSE, TRUE	-
ErrorID	DINT	0	See chapter 10.2 Motion Control Functionblocks Error Codes	-
Data	UDINT	0	0 to 4'294'967'295	-

A successful read operation is signalled by the output Done. An error during execution of the function block is signalled at the output Error. Additionally an ErrorID allows to get more information about the error cause.

Function Block Call using the programming language ST

Important

The execution of a function block instance might take longer than one PLC cycle. For a proper working system a function block instance has to be called (Execute or Enable) at every program cycle until its termination is signalled by the outputs Done, Error or Abort. At every call the function block instance will continue at its actual internal state where it has stopped during the previous PLC program cycle. Breaking this rule causes system errors. Especially if the function block uses CAN communication services which might not be finished fast enough.

7.3.3 Function Block CAN_SdoWrite

With the Function Block CAN_SdoWrite a CANopen object can be written using the SDO protocol.

Figure 84: CAN_SdoWrite

Input Variables

Name	Data Type	Default Value	Value Range	Unit
Execute	BOOL	FALSE	TRUE, FALSE	-
Device	USINT	0	0 to 127	-
Port	USINT	0	0 internal port 1 external port	-
Index	UINT	0	UINT	-
Sub-index	USINT	0	USINT	-
Data	UDINT	0	UDINT	-

A positive edge at the input Execute triggers the write operation of a CANopen object. The object is specified by the inputs Index and Sub-index. The input Device corresponds to the CAN Node-ID. The input Port distinguishes between internal and external CAN network.

Output Variables

Name	Data Type	Default Value	Value Range	Unit
Done	BOOL	FALSE	FALSE, TRUE	-
Error	BOOL	FALSE	FALSE, TRUE	-
ErrorID	DINT	0	See chapter 10.2 Motion Control Functionblocks Error Codes	-

A successful write operation is signalled by the output Done. An error during execution of the function block is signalled at the output Error. Additionally an ErrorID allows to get more information about the error cause.

Function Block Call using the programming language ST

Important

The execution of a function block instance might take longer than one PLC cycle. For a proper working system a function block instance has to be called (Execute or Enable) at every program cycle until its termination is signalled by the outputs Done, Error or Abort. At every call the function block instance will continue at its actual internal state where it has stopped during the previous PLC program cycle. Breaking this rule causes system errors. Especially if the function block uses CAN communication services which might not be finished fast enough.

8 Markers

Markers are typically used to build intermediate results. Those will be buffered in the PLC and do not have direct influence to the outputs. With markers extensive operations can be simplified essentially. Further, they act as transmitter between different modules.

The EPOS P is using specific marker areas for error and warning information's.

8.1 User Marker Area

The 'User Marker Area' length is 25 entries (32-bit values). It Is possible to write or read the 'User Marker Area'. To Access a marker variable IEC-61131 direct addressing method is used.

	-	
UserMarkerVariable0	AT	%MD0.0 : UDINT;
UserMarkerVariable1	AT	%MD4.0 : UDINT;
UserMarkerVariable2	AT	%MD8.0 : UDINT;
UserMarkerVariable3	AT	%MD12.0 :UDINT;
UserMarkerVariable4	AT	%MD16.0 : UDINT;
UserMarkerVariable5	AT	%MD20.0 : UDINT;
UserMarkerVariable6	AT	%MD24.0 : UDINT;
UserMarkerVariable7	AT	%MD28.0 : UDINT;
UserMarkerVariable8	AT	%MD32.0 : UDINT;
UserMarkerVariable9	AT	%MD36.0 : UDINT;
UserMarkerVariable10	AT	%MD40.0 : UDINT;
UserMarkerVariable11	AT	%MD44.0 : UDINT;
UserMarkerVariable12	AT	%MD48.0 : UDINT;
UserMarkerVariable13	AT	%MD52.0 : UDINT;
UserMarkerVariable14	AT	%MD56.0 : UDINT;
UserMarkerVariable15	AT	%MD60.0 : UDINT;
UserMarkerVariable16	AT	%MD64.0 : UDINT;
UserMarkerVariable17	AT	%MD68.0 : UDINT;
UserMarkerVariable18	AT	%MD72.0 : UDINT;
UserMarkerVariable19	AT	%MD76.0 : UDINT;
UserMarkerVariable20	AT	%MD80.0 : UDINT;
UserMarkerVariable21	AT	%MD84.0 : UDINT;
UserMarkerVariable22	AT	%MD88.0 : UDINT;
UserMarkerVariable23	AT	%MD92.0 : UDINT;
UserMarkerVariable24	AT	%MD96.0 : UDINT;

IEC-61131 declaration example with UDINT variables:

8.2 Marker Global Status Register

The 'Global Status Register' marker length is 32-bit. It holds the EPOS P global status register and is the very same register like the EPOS P CANopen object 0x1002. Bit 0 to Bit 7 represents an overview of the CANopen slave error register's. If one of the connected CANopen slave reports an error register flag, the according bit is set. For the meaning of CANopen error register please refer to the object description of the connected CANopen slave (object error register with index 0x1001 and subindex 0).

Bit	Description
0	One of the connected slaves is signalling a generic error bit in error register
1	One of the connected slaves is signalling a current error bit in error register
2	One of the connected slaves is signalling a voltage error bit in error register
3	One of the connected slaves is signalling a temperature error bit in error register
4	One of the connected slaves is signalling a communication error bit in error register
5	One of the connected slaves is signalling a device profile specific error bit in error register
6	Reserved
7	One of the connected slaves is signalling a manufacturer specific error bit in error register
8 - 15	Copy of error register
16	Master generic warning
17 - 19	Not used
20	Master communication warning
21 - 22	Not used
23	Master manufacturer specific warning
24 - 31	Not used

Table 1: Global Status Register Marker

IEC-61131 declaration example with BOOL variables:

ERR_mEposGenericError	AT	%M100.0 : BOOL;
ERR_mEposCurrentError	AT	%M100.1 : BOOL;
ERR_mEposVoltageError	AT	%M100.2 : BOOL;
ERR_mEposTemperatureError	AT	%M100.3 : BOOL;
ERR_mEposCommunicationError	AT	%M100.4 : BOOL;
ERR_mEposMotionError	AT	%M100.7 : BOOL;

8.3 Marker Global Axis Error Register

The 'Global Axis Error Register' length is 32-bit. It holds an overview of all connected axis. If one axis change to error state the according bit does indicate this.

Bit	Description	
0	Axis 0 is in error state	
1	Axis 1 is in error state	
2	Axis 2 is in error state	
n	Axis n is in error state	
31	Axis 31 is in error state	

Table 2: Global Axis Error Register Marker

IEC-61131 declaration example with BOOL variables:

-		
ERR_mAxis0Error	AT	%M104.0 : BOOL;
ERR_mAxis1Error	AT	%M104.1 : BOOL;
ERR_mAxis2Error	AT	%M104.2 : BOOL;
ERR_mAxis3Error	AT	%M104.3 : BOOL;
ERR_mAxis4Error	AT	%M104.4 : BOOL;
ERR_mAxis5Error	AT	%M104.5 : BOOL;
ERR_mAxis6Error	AT	%M104.6 : BOOL;
ERR_mAxis7Error	AT	%M104.7 : BOOL;
	AT	
ERR_MAXIS8Error	AI	%M105.0 : BOOL;
ERR_mAxis9Error	AI	%M105.1 : BOOL;
ERR_mAxis10Error	AT	%M105.2 : BOOL;
ERR_mAxis11Error	AT	%M105.3 : BOOL;
ERR_mAxis12Error	AT	%M105.4 : BOOL;
ERR_mAxis13Error	AT	%M105.5 : BOOL;
ERR_mAxis14Error	AT	%M105.6 : BOOL;
ERR_mAxis15Error	AT	%M105.7 : BOOL;
FBR mAxis16Frror	AT	%M106.0 · BOOL ·
EBB mAxis17Error	AT	%M1061:BOOL:
FBR mAxis18Error	AT	%M106 2 · BOOL ·
EBB mAxis19Error	AT	%M106.3 · BOOL ·
FBR mAxis20Error	AT	%M1064 · BOOL ·
EBB mAxis21Error	AT	%M106.5 : BOOL :
EBB mAxis22Error	ΔΤ	%M106.6 : BOOL :
EBB mAxis23Error	AT	%M106.7 : BOOL :
	7.0	
ERR_mAxis24Error	AT	%M107.0 : BOOL;
ERR_mAxis25Error	AT	%M107.1 : BOOL;
ERR_mAxis26Error	AT	%M107.2 : BOOL;
ERR_mAxis27Error	AT	%M107.3 : BOOL;
ERR_mAxis28Error	AT	%M107.4 : BOOL;
ERR_mAxis29Error	AT	%M107.5 : BOOL:
		······································
ERR_MAXIS30Error	AT	%M107.6 : BOOL;
ERR_mAxis30Error	AT AT	%M107.6 : BOOL; %M107.7 : BOOL;

8.4 Reserved Marker Area

The 'Reserved Marker Area' length is 23 entries (32-bit values). It is reserved for further use.

8.5 CANopen Slave Error Register Area

The 'CANopen Slave Error Register Area' length is 128 entries (8-bit values). It represents the CANopen error register of the connected slave. For the meaning of CANopen error register please refer to the object description of the connected CANopen slave (error register with index 0x1001 and subindex 0).

IEC-61131 declaration example with USINT variables:

ERR_mErrorRegisterInternalEPOS	AT	%MB200.0 : USINT;
ERR_mErrorRegisterCANopenSlave1	AT	%MB201.0 : USINT;
ERR_mErrorRegisterCANopenSlave2	AT	%MB202.0 : USINT;
	AT	
ERR_mErrorRegisterCANopenSlave127	AT	%MB327.0 : USINT;

IEC-61131 declaration example with BOOL variables for EPOS slaves (sample internal EPOS):

ERR_mInternalEposGenericError	AT	%M200.0 : BOOL;
ERR_mInternalEposCurrentError	AT	%M200.1 : BOOL;
ERR_mInternalEposVoltageError	AT	%M200.2 : BOOL;
ERR_mInternalEposTemperatureError	AT	%M200.3 : BOOL;
ERR_mInternalEposCommunicationError	AT	%M200.4 : BOOL;

9 Process Inputs and Outputs

Process inputs and outputs are used to read the incoming or write the outgoing CANopen PDO's. PDO communication is a powerful and easy way of communication by reading or writing direct addressed variables. Nevertheless before this communication method is ready to use a PDO configuration is necessary. Please refer to chapter Network Configuration. Use always the configuration tool for PDO configuration. For the ,option function blocks (e.g. MC_Power, ...) also use PDO communication.

9.1 Process Inputs

9.1.1 SINT Process Inputs

There are 16 SINT values in the 'Process Inputs Area' with the length of 8-bit. The variables holds the very same values like the related CANopen object dictionary entry with index 0xA000.

InVar1	AT	%IB0.0 : SINT;	(*Object Index 0xA000, Subindex 1*)
InVar2	AT	%IB1.0 : SINT;	(*Object Index 0xA000, Subindex 2*)
InVar3	AT	%IB2.0 : SINT;	(*Object Index 0xA000, Subindex 3*)
InVar4	AT	%IB3.0 : SINT;	(*Object Index 0xA000, Subindex 4*)
InVar5	AT	%IB4.0 : SINT;	(*Object Index 0xA000, Subindex 5*)
InVar6	AT	%IB5.0 : SINT;	(*Object Index 0xA000, Subindex 6*)
InVar7	AT	%IB6.0 : SINT;	(*Object Index 0xA000, Subindex 7*)
InVar8	AT	%IB7.0 : SINT;	(*Object Index 0xA000, Subindex 8*)
InVar9	AT	%IB8.0 : SINT;	(*Object Index 0xA000, Subindex 9*)
InVar10	AT	%IB9.0 : SINT;	(*Object Index 0xA000, Subindex 10*)
InVar11	AT	%IB10.0 : SINT;	(*Object Index 0xA000, Subindex 11*)
InVar12	AT	%IB11.0 : SINT;	(*Object Index 0xA000, Subindex 12*)
InVar13	AT	%IB12.0 : SINT;	(*Object Index 0xA000, Subindex 13*)
InVar14	AT	%IB13.0 : SINT;	(*Object Index 0xA000, Subindex 14*)
InVar15	AT	%IB14.0 : SINT;	(*Object Index 0xA000, Subindex 15*)
InVar16	AT	%IB15.0 : SINT;	(*Object Index 0xA000, Subindex 16*)

IEC-61131 declaration example with SINT variables:

9.1.2 USINT Process Inputs

There are 16 USINT values in the 'Process Inputs Area' with the length of 8-bit. The variables holds the very same values like the related CANopen object dictionary entry with index 0xA040.

	oonana		
InVar1	AT	%IB16.0 : USINT;	(*Object Index 0xA040, Subindex 1*)
InVar2	AT	%IB17.0 : USINT;	(*Object Index 0xA040, Subindex 2*)
InVar3	AT	%IB18.0 : USINT;	(*Object Index 0xA040, Subindex 3*)
InVar4	AT	%IB19.0 : USINT;	(*Object Index 0xA040, Subindex 4*)
InVar5	AT	%IB20.0 : USINT;	(*Object Index 0xA040, Subindex 5*)
InVar6	AT	%IB21.0 : USINT;	(*Object Index 0xA040, Subindex 6*)
InVar7	AT	%IB22.0 : USINT;	(*Object Index 0xA040, Subindex 7*)
InVar8	AT	%IB23.0 : USINT;	(*Object Index 0xA040, Subindex 8*)
InVar9	AT	%IB24.0 : USINT;	(*Object Index 0xA040, Subindex 9*)
InVar10	AT	%IB25.0 : USINT;	(*Object Index 0xA040, Subindex 10*)
InVar11	AT	%IB26.0 : USINT;	(*Object Index 0xA040, Subindex 11*)
InVar12	AT	%IB27.0 : USINT;	(*Object Index 0xA040, Subindex 12*)
InVar13	AT	%IB28.0 : USINT;	(*Object Index 0xA040, Subindex 13*)
InVar14	AT	%IB29.0 : USINT;	(*Object Index 0xA040, Subindex 14*)
InVar15	AT	%IB30.0 : USINT;	(*Object Index 0xA040, Subindex 15*)
InVar16	AT	%IB31.0 : USINT;	(*Object Index 0xA040, Subindex 16*)

IEC-61131 declaration example with USINT variables:

9.1.3 INT Process Inputs

There are 16 INT values in the 'Process Inputs Area' with the length of 16-bit. The variables holds the very same values like the related CANopen object dictionary entry with index 0xA0C0.

InVar1	AT	%IW32.0 : INT;	(*Object Index 0xA0C0, Subindex 1*)
InVar2	AT	%IW34.0 : INT;	(*Object Index 0xA0C0, Subindex 2*)
InVar3	AT	%IW36.0 : INT;	(*Object Index 0xA0C0, Subindex 3*)
InVar4	AT	%IW38.0 : INT;	(*Object Index 0xA0C0, Subindex 4*)
InVar5	AT	%IW40.0 : INT;	(*Object Index 0xA0C0, Subindex 5*)
InVar6	AT	%IW42.0 : INT;	(*Object Index 0xA0C0, Subindex 6*)
InVar7	AT	%IW44.0 : INT;	(*Object Index 0xA0C0, Subindex 7*)
InVar8	AT	%IW46.0 : INT;	(*Object Index 0xA0C0, Subindex 8*)
InVar9	AT	%IW48.0 : INT;	(*Object Index 0xA0C0, Subindex 9*)
InVar10	AT	%IW50.0 : INT;	(*Object Index 0xA0C0, Subindex 10*)
InVar11	AT	%IW52.0 : INT;	(*Object Index 0xA0C0, Subindex 11*)
InVar12	AT	%IW54.0 : INT;	(*Object Index 0xA0C0, Subindex 12*)
InVar13	AT	%IW56.0 : INT;	(*Object Index 0xA0C0, Subindex 13*)
InVar14	AT	%IW58.0 : INT;	(*Object Index 0xA0C0, Subindex 14*)
InVar15	AT	%IW60.0 : INT;	(*Object Index 0xA0C0, Subindex 15*)
InVar16	AT	%IW62.0 : INT;	(*Object Index 0xA0C0, Subindex 16*)

IEC-61131 declaration example with INT variables:

9.1.4 UINT Process Inputs

There are 16 UINT values in the 'Process Inputs Area' with the length of 16-bit. The variables holds the very same values like the related CANopen object dictionary entry with index 0xA100.

InVar1	AT	%IW64.0 : UINT;	(*Object Index 0xA100, Subindex 1*)	
InVar2	AT	%IW66.0 : UINT;	(*Object Index 0xA100, Subindex 2*)	
InVar3	AT	%IW68.0 : UINT;	(*Object Index 0xA100, Subindex 3*)	
InVar4	AT	%IW70.0 : UINT;	(*Object Index 0xA100, Subindex 4*)	
InVar5	AT	%IW72.0 : UINT;	(*Object Index 0xA100, Subindex 5*)	
InVar6	AT	%IW74.0 : UINT;	(*Object Index 0xA100, Subindex 6*)	
InVar7	AT	%IW76.0 : UINT;	(*Object Index 0xA100, Subindex 7*)	
InVar8	AT	%IW78.0 : UINT;	(*Object Index 0xA100, Subindex 8*)	
InVar9	AT	%IW80.0 : UINT;	(*Object Index 0xA100, Subindex 9*)	
InVar10	AT	%IW82.0 : UINT;	(*Object Index 0xA100, Subindex 10*)	
InVar11	AT	%IW84.0 : UINT;	(*Object Index 0xA100, Subindex 11*)	
InVar12	AT	%IW86.0 : UINT;	(*Object Index 0xA100, Subindex 12*)	
InVar13	AT	%IW88.0 : UINT;	(*Object Index 0xA100, Subindex 13*)	
InVar14	AT	%IW90.0 : UINT;	(*Object Index 0xA100, Subindex 14*)	
InVar15	AT	%IW92.0 : UINT;	(*Object Index 0xA100, Subindex 15*)	
InVar16	AT	%IW94.0 : UINT;	(*Object Index 0xA100, Subindex 16*)	

IEC-61131 declaration example with UINT variables:

9.1.5 DINT Process Inputs

There are 16 DINT values in the 'Process Inputs Area' with the length of 32-bit. The variables holds the very same values like the related CANopen object dictionary entry with index 0xA1C0.

InVar1	AT	%ID96.0 : DINT;	(*Object Index 0xA1C0, Subindex 1*)
InVar2	AT	%ID100.0 : DINT;	(*Object Index 0xA1C0, Subindex 2*)
InVar3	AT	%ID104.0 : DINT;	(*Object Index 0xA1C0, Subindex 3*)
InVar4	AT	%ID108.0 : DINT;	(*Object Index 0xA1C0, Subindex 4*)
InVar5	AT	%ID112.0 : DINT;	(*Object Index 0xA1C0, Subindex 5*)
InVar6	AT	%ID116.0 : DINT;	(*Object Index 0xA1C0, Subindex 6*)
InVar7	AT	%ID120.0 : DINT;	(*Object Index 0xA1C0, Subindex 7*)
InVar8	AT	%ID124.0 : DINT;	(*Object Index 0xA1C0, Subindex 8*)
InVar9	AT	%ID128.0 : DINT;	(*Object Index 0xA1C0, Subindex 9*)
InVar10	AT	%ID132.0 : DINT;	(*Object Index 0xA1C0, Subindex 10*)
InVar11	AT	%ID136.0 : DINT;	(*Object Index 0xA1C0, Subindex 11*)
InVar12	AT	%ID140.0 : DINT;	(*Object Index 0xA1C0, Subindex 12*)
InVar13	AT	%ID144.0 : DINT;	(*Object Index 0xA1C0, Subindex 13*)
InVar14	AT	%ID148.0 : DINT;	(*Object Index 0xA1C0, Subindex 14*)
InVar15	AT	%ID152.0 : DINT;	(*Object Index 0xA1C0, Subindex 15*)
InVar16	AT	%ID156.0 : DINT;	(*Object Index 0xA1C0, Subindex 16*)

IEC-61131 declaration example with DINT variables:

9.1.6 UDINT Process Inputs

There are 16 UDINT values in the 'Process Inputs Area' with the length of 32-bit. The variables holds the very same values like the related CANopen object dictionary entry with index 0xA200.

InVar1	AT	%ID160.0 : UDINT;	(*Object Index 0xA200, Subindex 1*)	
InVar2	AT	%ID164.0 : UDINT;	(*Object Index 0xA200, Subindex 2*)	
InVar3	AT	%ID168.0 : UDINT;	(*Object Index 0xA200, Subindex 3*)	
InVar4	AT	%ID172.0 : UDINT;	(*Object Index 0xA200, Subindex 4*)	
InVar5	AT	%ID176.0 : UDINT;	(*Object Index 0xA200, Subindex 5*)	
InVar6	AT	%ID180.0 : UDINT;	(*Object Index 0xA200, Subindex 6*)	
InVar7	AT	%ID184.0 : UDINT;	(*Object Index 0xA200, Subindex 7*)	
InVar8	AT	%ID188.0 : UDINT;	(*Object Index 0xA200, Subindex 8*)	
InVar9	AT	%ID192.0 : UDINT;	(*Object Index 0xA200, Subindex 9*)	
InVar10	AT	%ID196.0 : UDINT;	(*Object Index 0xA200, Subindex 10*)	
InVar11	AT	%ID200.0 : UDINT;	(*Object Index 0xA200, Subindex 11*)	
InVar12	AT	%ID204.0 : UDINT;	(*Object Index 0xA200, Subindex 12*)	
InVar13	AT	%ID208.0 : UDINT;	(*Object Index 0xA200, Subindex 13*)	
InVar14	AT	%ID212.0 : UDINT;	(*Object Index 0xA200, Subindex 14*)	
InVar15	AT	%ID216.0 : UDINT;	(*Object Index 0xA200, Subindex 15*)	
InVar16	AT	%ID220.0 : UDINT;	(*Object Index 0xA200, Subindex 16*)	

IEC-61131 declaration example with UDINT variables:

9.2 Process Outputs

9.2.1 SINT Process Outputs

There are 16 SINT values in the 'Process Outputs Area' with the length of 8-bit. The variables holds the very same values like the related CANopen object dictionary entry with index 0xA480.

		-	
OutVar1	AT	%QB0.0 : SINT;	(*Object Index 0xA480, Subindex 1*)
OutVar2	AT	%QB1.0 : SINT;	(*Object Index 0xA480, Subindex 2*)
OutVar3	AT	%QB2.0 : SINT;	(*Object Index 0xA480, Subindex 3*)
OutVar4	AT	%QB3.0 : SINT;	(*Object Index 0xA480, Subindex 4*)
OutVar5	AT	%QB4.0 : SINT;	(*Object Index 0xA480, Subindex 5*)
OutVar6	AT	%QB5.0 : SINT;	(*Object Index 0xA480, Subindex 6*)
OutVar7	AT	%QB6.0 : SINT;	(*Object Index 0xA480, Subindex 7*)
OutVar8	AT	%QB7.0 : SINT;	(*Object Index 0xA480, Subindex 8*)
OutVar9	AT	%QB8.0 : SINT;	(*Object Index 0xA480, Subindex 9*)
OutVar10	AT	%QB9.0 : SINT;	(*Object Index 0xA480, Subindex 10*)
OutVar11	AT	%QB10.0 : SINT;	(*Object Index 0xA480, Subindex 11*)
OutVar12	AT	%QB11.0 : SINT;	(*Object Index 0xA480, Subindex 12*)
OutVar13	AT	%QB12.0 : SINT;	(*Object Index 0xA480, Subindex 13*)
OutVar14	AT	%QB13.0 : SINT;	(*Object Index 0xA480, Subindex 14*)
OutVar15	AT	%QB14.0 : SINT;	(*Object Index 0xA480, Subindex 15*)
OutVar16	AT	%QB15.0 : SINT;	(*Object Index 0xA480, Subindex 16*)

IEC-61131 declaration example with SINT variables:

9.2.2 USINT Process Outputs

There are 16 USINT values in the 'Process Outputs Area' with the length of 8-bit. The variables holds the very same values like the related CANopen object dictionary entry with index 0xA4C0.

OutVar1	AT	%QB16.0 : USINT;	(*Object Index 0xA4C0, Subindex 1*)	
OutVar2	AT	%QB17.0 : USINT;	(*Object Index 0xA4C0, Subindex 2*)	
OutVar3	AT	%QB18.0 : USINT;	(*Object Index 0xA4C0, Subindex 3*)	
OutVar4	AT	%QB19.0 : USINT;	(*Object Index 0xA4C0, Subindex 4*)	
OutVar5	AT	%QB20.0 : USINT;	(*Object Index 0xA4C0, Subindex 5*)	
OutVar6	AT	%QB21.0 : USINT;	(*Object Index 0xA4C0, Subindex 6*)	
OutVar7	AT	%QB22.0 : USINT;	(*Object Index 0xA4C0, Subindex 7*)	
OutVar8	AT	%QB23.0 : USINT;	(*Object Index 0xA4C0, Subindex 8*)	
OutVar9	AT	%QB24.0 : USINT;	(*Object Index 0xA4C0, Subindex 9*)	
OutVar10	AT	%QB25.0 : USINT;	(*Object Index 0xA4C0, Subindex 10*)	
OutVar11	AT	%QB26.0 : USINT;	(*Object Index 0xA4C0, Subindex 11*)	
OutVar12	AT	%QB27.0 : USINT;	(*Object Index 0xA4C0, Subindex 12*)	
OutVar13	AT	%QB28.0 : USINT;	(*Object Index 0xA4C0, Subindex 13*)	
OutVar14	AT	%QB29.0 : USINT;	(*Object Index 0xA4C0, Subindex 14*)	
OutVar15	AT	%QB30.0 : USINT;	(*Object Index 0xA4C0, Subindex 15*)	
OutVar16	AT	%QB31.0 : USINT;	(*Object Index 0xA4C0, Subindex 16*)	

IEC-61131 declaration example with USINT variables:

9.2.3 INT Process Outputs

There are 16 INT values in the 'Process Outputs Area' with the length of 16-bit. The variables holds the very same values like the related CANopen object dictionary entry with index 0xA540.

OutVar1	AT	%QW32.0 : INT;	(*Object Index 0xA540, Subindex 1*)
OutVar2	AT	%QW34.0 : INT;	(*Object Index 0xA540, Subindex 2*)
OutVar3	AT	%QW36.0 : INT;	(*Object Index 0xA540, Subindex 3*)
OutVar4	AT	%QW38.0 : INT;	(*Object Index 0xA540, Subindex 4*)
OutVar5	AT	%QW40.0 : INT;	(*Object Index 0xA540, Subindex 5*)
OutVar6	AT	%QW42.0 : INT;	(*Object Index 0xA540, Subindex 6*)
OutVar7	AT	%QW44.0 : INT;	(*Object Index 0xA540, Subindex 7*)
OutVar8	AT	%QW46.0 : INT;	(*Object Index 0xA540, Subindex 8*)
OutVar9	AT	%QW48.0 : INT;	(*Object Index 0xA540, Subindex 9*)
OutVar10	AT	%QW50.0 : INT;	(*Object Index 0xA540, Subindex 10*)
OutVar11	AT	%QW52.0 : INT;	(*Object Index 0xA540, Subindex 11*)
OutVar12	AT	%QW54.0 : INT;	(*Object Index 0xA540, Subindex 12*)
OutVar13	AT	%QW56.0 : INT;	(*Object Index 0xA540, Subindex 13*)
OutVar14	AT	%QW58.0 : INT;	(*Object Index 0xA540, Subindex 14*)
OutVar15	AT	%QW60.0 : INT;	(*Object Index 0xA540, Subindex 15*)
OutVar16	AT	%QW62.0 : INT;	(*Object Index 0xA540, Subindex 16*)

IEC-61131 declaration example with INT variables:

9.2.4 UINT Process Outputs

There are 16 UINT values in the 'Process Outputs Area' with the length of 16-bit. The variables holds the very same values like the related CANopen object dictionary entry with index 0xA580.

120 01101 a					
OutVar1	AT	%QW64.0 : UINT;	(*Object Index 0xA580, Subindex 1*)		
OutVar2	AT	%QW66.0 : UINT;	(*Object Index 0xA580, Subindex 2*)		
OutVar3	AT	%QW68.0 : UINT;	(*Object Index 0xA580, Subindex 3*)		
OutVar4	AT	%QW70.0 : UINT;	(*Object Index 0xA580, Subindex 4*)		
OutVar5	AT	%QW72.0 : UINT;	(*Object Index 0xA580, Subindex 5*)		
OutVar6	AT	%QW74.0 : UINT;	(*Object Index 0xA580, Subindex 6*)		
OutVar7	AT	%QW76.0 : UINT;	(*Object Index 0xA580, Subindex 7*)		
OutVar8	AT	%QW78.0 : UINT;	(*Object Index 0xA580, Subindex 8*)		
OutVar9	AT	%QW80.0 : UINT;	(*Object Index 0xA580, Subindex 9*)		
OutVar10	AT	%QW82.0 : UINT;	(*Object Index 0xA580, Subindex 10*)		
OutVar11	AT	%QW84.0 : UINT;	(*Object Index 0xA580, Subindex 11*)		
OutVar12	AT	%QW86.0 : UINT;	(*Object Index 0xA580, Subindex 12*)		
OutVar13	AT	%QW88.0 : UINT;	(*Object Index 0xA580, Subindex 13*)		
OutVar14	AT	%QW90.0 : UINT;	(*Object Index 0xA580, Subindex 14*)		
OutVar15	AT	%QW92.0 : UINT;	(*Object Index 0xA580, Subindex 15*)		
OutVar16	AT	%QW94.0 : UINT;	(*Object Index 0xA580, Subindex 16*)		

IEC-61131 declaration example with UINT variables:

9.2.5 DINT Process Outputs

There are 16 DINT values in the 'Process Outputs Area' with the length of 32-bit. The variables holds the very same values like the related CANopen object dictionary entry with index 0xA640.

OutVar1	AT	%QD96.0 : DINT;	(*Object Index 0xA640, Subindex 1*)
OutVar2	AT	%QD100.0 : DINT;	(*Object Index 0xA640, Subindex 2*)
OutVar3	AT	%QD104.0 : DINT;	(*Object Index 0xA640, Subindex 3*)
OutVar4	AT	%QD108.0 : DINT;	(*Object Index 0xA640, Subindex 4*)
OutVar5	AT	%QD112.0 : DINT;	(*Object Index 0xA640, Subindex 5*)
OutVar6	AT	%QD116.0 : DINT;	(*Object Index 0xA640, Subindex 6*)
OutVar7	AT	%QD120.0 : DINT;	(*Object Index 0xA640, Subindex 7*)
OutVar8	AT	%QD124.0 : DINT;	(*Object Index 0xA640, Subindex 8*)
OutVar9	AT	%QD128.0 : DINT;	(*Object Index 0xA640, Subindex 9*)
OutVar10	AT	%QD132.0 : DINT;	(*Object Index 0xA640, Subindex 10*)
OutVar11	AT	%QD136.0 : DINT;	(*Object Index 0xA640, Subindex 11*)
OutVar12	AT	%QD140.0 : DINT;	(*Object Index 0xA640, Subindex 12*)
OutVar13	AT	%QD144.0 : DINT;	(*Object Index 0xA640, Subindex 13*)
OutVar14	AT	%QD148.0 : DINT;	(*Object Index 0xA640, Subindex 14*)
OutVar15	AT	%QD152.0 : DINT;	(*Object Index 0xA640, Subindex 15*)
OutVar16	AT	%QD156.0 : DINT;	(*Object Index 0xA640, Subindex 16*)

IEC-61131 declaration example with DINT variables:

9.2.6 UDINT Process Outputs

There are 16 DINT values in the 'Process Outputs Area' with the length of 32-bit. The variables holds the very same values like the related CANopen object dictionary entry with index 0xA680.

IEC-61131	declaration	example v	with UDINT	variables:
-----------	-------------	-----------	------------	------------

OutVar1	AT	%QD160.0 : UDINT;	(*Object Index 0xA680, Subindex 1*)
OutVar2	AT	%QD164.0 : UDINT;	(*Object Index 0xA680, Subindex 2*)
OutVar3	AT	%QD168.0 : UDINT;	(*Object Index 0xA680, Subindex 3*)
OutVar4	AT	%QD172.0 : UDINT;	(*Object Index 0xA680, Subindex 4*)
OutVar5	AT	%QD176.0 : UDINT;	(*Object Index 0xA680, Subindex 5*)
OutVar6	AT	%QD180.0 : UDINT;	(*Object Index 0xA680, Subindex 6*)
OutVar7	AT	%QD184.0 : UDINT;	(*Object Index 0xA680, Subindex 7*)
OutVar8	AT	%QD188.0 : UDINT;	(*Object Index 0xA680, Subindex 8*)
OutVar9	AT	%QD192.0 : UDINT;	(*Object Index 0xA680, Subindex 9*)
OutVar10	AT	%QD196.0 : UDINT;	(*Object Index 0xA680, Subindex 10*)
OutVar11	AT	%QD200.0 : UDINT;	(*Object Index 0xA680, Subindex 11*)
OutVar12	AT	%QD204.0 : UDINT;	(*Object Index 0xA680, Subindex 12*)
OutVar13	AT	%QD208.0 : UDINT;	(*Object Index 0xA680, Subindex 13*)
OutVar14	AT	%QD212.0 : UDINT;	(*Object Index 0xA680, Subindex 14*)
OutVar15	AT	%QD216.0 : UDINT;	(*Object Index 0xA680, Subindex 15*)
OutVar16	AT	%QD220.0 : UDINT;	(*Object Index 0xA680, Subindex 16*)

10 Error Handling

10.1 Programming Environment Error Codes

The programming environment error (and warning) codes will be displayed in a popup window if the programming tool is active. In case of an error the application program will be stopped. Warnings do not stop the application.

Error Code	Description	Comment
1002	Out of program memory Program execution not possible	Program is to big (try with size only)
1004	No valid program	
1005	Download of invalid data	Download incomplete / logical Error
1006	Configuration error / wrong program	
1008	Invalid program number	
1009	Invalid segment number	
1011	Segment already on PLC	
1012	No free watch ID available	Watch table is already full
1013	Invalid command received	
1014	Action not valid. Switch to maintenance first	Operation not allowed in current mode
1015	General network error	Communication error on service interface
1016	Accepted receipt too small	Communication error on service interface
1018	Timer task error	Previous timer task processing was not already finished
1020	Error calling kernel	Error at call of interpreter
1021	Error calling native code	Error at execution of native code
1900	Retain variable handling failed	Too many retain variables or hardware error
1901	NMT boot up error, check CAN configuration	See EPOS P error history for details
1903	One or more slave configuration wrong	Configuration date or time does not match
1904	Problem with persistence memory	Warning only
1905	CAN communication error	See EPOS P error history for details
1908	System was reset by watchdog	Warning only (*)
1909	Interrupt Task error	Previous interrupt processing was not already finished
1911	Execution error: data or program exception	Fatal application processing error
2001	RUN TIME ERROR: division by zero	
2002	RUN TIME ERROR: invalid array index	
2003	RUN TIME ERROR: invalid opcode	Unsupported command
2004	RUN TIME ERROR: opcode not supported	Unsupported command
2005	RUN TIME ERROR: invalid extension	Unsupported command
2006	RUN TIME ERROR: unknown command	Unsupported command
2008	Invalid bit reference	Runtime error
2009	Error restoring data	Runtime error
2010	Invalid array element size	Runtime error
2011	Invalid struct size	Runtime error
2012	RUN TIME ERROR: modulo zero, result undefined	

Table 3: Programming Environment Error Codes

(*): The EPOS Studio uses a watchdog reset also for resetting the Node. Therefore this warning could also be triggered when EPOS Studio manipulates the EPOS P.

10.2 Motion Control Function Blocks Error Codes

The motion control firmware function blocks can return internal error codes as well as error codes (e.g. communication aborts) from the accessed slaves.

Error Code	Description	Comment
0x0000 0000	No error	
0x0000 0001	Internal function block sequence error	
II	Communication abort codes of the connected slave are inserted here (related to DS-301, DSP-402, etc)	Refer to the Firmware Specification of the EPOS
0x0F00 FFC0	The device is in wrong NMT state	
0x0FFF FFF0	CAN communication sequence error	
0x0FFF FFF1	Communication aborted by CAN driver	
0x0FFF FFF2	Communication buffer overflow	
0x0FFF FFF9	Segmented transfer communication error	
0x0FFF FFFA	Wrong axis number	Not in range of 0 31
0x0FFF FFFB	Wrong device number	Not in range of 1127
0x0FFF FFFC	Wrong CAN port	Not 1 or 2
0x0FFF FFFD	Bad function calling parameters	
0x0FFF FFFE	General CAN communication error	
0x0FFF FFFF	CAN communication time out	

Table 4: Function Block Error Codes

11 Example Projects

11.1 Example «HelloWorld»

Project	HelloWorld		
Description	This example project is a very simple project for the first contact with the programming environment. No motion control functionality is used and no motor must be connected. This program can be used to learn the handling of the programming environment and to check the online connection to the EPOS P.		
Used Languages	Structured Text		
Task	Timer Task (10 ms)		
Files	HelloWorld.VARProject fileCounter.STMain programReadMe.TXTAdditional information		

Figure 85: Example 'HelloWorld'

11.2 Example «SimpleMotionSequence»

Project	SimpleMotionSequence		
Description	The SimpleMotionSequence example consists of two state machines. The first state machine implements the application process and the second implements the error handling. The main state machine moves between two positions. For detailed description of this example, see document «SimpleMotionSequence.pdf».		
Used Languages	SFC (Sequential Function Chart) FBD (Function Block Diagram)		
Task	Cyclic		
Files	SimpleMotionSequence.VAR PROG_Main.SFC PROG_ErrorHandling.SFC	Project file Main program Error handling	

Figure 86: Example 'SimpleMotionSequence'

11.3 «Best Practice» Program Examples

The «best practice» example collection (available for IEC 611131-3 editors SFC, FBD and ST) shows individual aspects of EPOS P programming. These examples may be a part of a complete application. But they keep focus on single tasks during application programming.

Program example	Description			
«State Machine»	The example «State Machine» shows how to implement a state machine including states and transitions. A state machine is the basis and starting point of every EPOS P program. This implementation is the framework for all other examples. For detailed description of this example, see document «StateMachineProject.pdf».			
«Error Handling»	The example «Error Handling» demonstrates the usage of the error handling state machine. The state machine detects axis-related errors, communication errors and is gathering error information about the individual error sources. The error information is shown in separate variables on the debug screen. For detailed description of this example, see document «ErrorHandlingProject.pdf».			
«Input Output Handling»	The example «Input Output Handling» is used to demonstrate how to read digital and analogue inputs and how to write digital outputs. For detailed description of this example, see document «InputOutputHandlingProject.pdf».			
«Homing»	The example «Homing» shows how to configure, start and stop a homing procedure. For detailed description of this example, see document «HomingProject.pdf».			
«Positioning»	The example «Positioning» shows how to execute positioning operations. There are three different kinds of positioning presented, two sequential relative positioning, an interrupted positioning and stop-ping the relative positioning. For detailed description of this example, see document «PositioningProject.pdf».			
«Continuous Motion»	The example «Continuous Motion» shows how to execute continuous motions. There are three different kinds of continuous motion presented, two sequential continuous motions, an interrupted continuous motion and stopping the continuous motion. For detailed description of this example, see document «ContinuousMotionProject.pdf».			
«Actual Value Reading»	The example «Actual Value Reading» shows how to read the actual position, the actual velocity and the actual current of the EPOS. For detailed description of this example, see document «ActualValueReadingProject.pdf».			
«Object Dictionary Access»	The example «Object Dictionary Access» shows how to read or write an object from the object dictionary. For detailed description of this example, see document «ObjectDictAccessProject.pdf».			
«Data Handling»	The example «Data Handling» shows how to process data. The example is used to read and write bits and to convert data types For detailed description of this example, see document «DataHandlingProject.pdf».			

11.4 Application Program Examples

The application example collection shows complete applications of EPOS P programming. These examples may be consisting of some «best practice» examples.

Program example	Description
«Cyclic Motion»	The example «Cyclic Motion» shows typical motion sequences with one axis. Homing, continuous motion and positioning are part of this example. For detailed description of this program example, see document «CyclicMotionProject.pdf».
«I/O Mode»	The example «I/O Mode» shows I/O triggered motions with one axis. For detailed description of this program example, see document «IO_ModeProject.pdf».
«Multi-Axis Motion»	The example «Multi-axis Motion» shows how to implement coordinated motions with two axes. For detailed description of this program example, see document «MultiaxisMotionProject.pdf».

EPOS P Positioning Controller 12 Additional Information

[1]	CiA DS-301 Communication Profile for Industrial Systems	www.can-cia.org
[2]	CiA DSP-302 Framework for CANopen Managers and Programmable CANopen Devices	www.can-cia.org (for CiA members only)
[3]	CiA DS-405 Interface and Device Profile for IEC-61131-3 Programmable Devices	www.can-cia.org
[4]	PLCopen: Function blocks for motion control	http://plcopen.org/
[5]	Konrad Etschberger: Controller Area Network (ISBN 3-446-21776-2)	
[6]	maxon motor: EPOS Firmware Specification (Document #798675)	EPOS P CD-ROM or <u>www.maxonmotor.com</u> category <service &="" downloads=""></service>
[7]	maxon motor: EPOS P Firmware Specification (Document #810011)	EPOS P CD-ROM or <u>www.maxonmotor.com</u> category <service &="" downloads=""></service>