
maxon motor control
EPOS Application Note: CANopen Basic Information Version 1.0

maxon motor ag Brünigstrasse 220 P.O. Box 263 CH-6072 Sachseln Tel.: 041/666 15 00 Fax: 041/666 16 50 www.maxonmotor.com

Application Note
"CANopen Basic Information"

EPOS 24/1, EPOS 24/5, EPOS 70/10
Firmware version 2000h or higher

Introduction

The EPOS is a digital positioning system suitable for DC and EC (brushless) motors with incremental encoders in
a modular package. The performance range of these compact positioning controllers ranges from a few watts up
to 700 watts.

A variety of operating modes means that all kinds of drive and automation systems can be flexibly assembled
using positioning, speed and current regulation. The built-in CANopen interface allows networking to multiple axis
drives and online commanding by CAN bus master units.

For fast communication with several EPOS devices, use the CANopen protocol. The individual devices of a
network are commanded by a CANopen master.

Objectives

This application note explains the functionality of the CANopen structure and protocol. The configuration process
is explained step by step.

Required Tool

maxon motor EPOS Graphical User Interface GUI Version 1.00 or higher
Freely available at http://www.maxonmotor.com category «Service», subdirectory «Downloads», Order number
280937, 280938, 302267, 302287, 275512, 300583

References

maxon motor EPOS Communication Guide
maxon motor EPOS Firmware Specification
Freely available at http://www.maxonmotor.com category «Service», subdirectory «Downloads», Order number
280937, 280938, 302267, 302287, 275512, 300583

CANopen documentation: Specifications ‘DS-301 Version 4.02’ and ‘DSP-402 Version 2.0’
CiA (CAN in Automation e. V.) http://www.can-cia.org.

http://www.maxonmotor.com/
http://www.maxonmotor.com/
http://www.can-cia.org/

maxon motor control
EPOS Application Note: CANopen Basic Information Version 1.0

Network Structure

The CAN interface of the maxon EPOS drives follows the CiA CANopen specification DS-301 communication
profile.

Figure 1: CANopen Network Structure

Configuration

Follow the instructions step by step to set up a correct CAN communication.

Step 1:
CANopen
Master

Use one of the listed PC CAN interface cards or PLC's. For all of these manufacturers motion
control libraries, examples and documentation are available. The latest version may be
downloaded freely on internet side of maxon motor ag (http://www.maxonmotor.com).

Recommended PC CAN interface card

Manufacturer / Contact Supported
Products

maxon Motion
Control Library

IXXAT
 www.ixxat.de/english/kontakt/distrib.shtml

all offered CAN
cards

Windows 32-Bit DLL

Recommended PLC's

Manufacturer / Contact Supported
Products

maxon Motion
Control Library

Beckhoff
 www.beckhoff.de

all offered CAN
cards

IEC 1131 Beckhoff
Library

Siemens
 www.siemens.com/index.jsp

Helmholz
 www.helmholz.de

S7-300 with
Helmholz
CAN300 Master

IEC 1131 Siemens
S7 Library

VIPA
 www.vipa.de

VIPA 214-2CM02
CAN-Master

IEC 1131 VIPA
Library

Note: All other CAN products of other manufacturers can also be used, however no motion
control library is available.

EPOS Application Note: CANopen Basic Information Page 2/9 Edition: 14.09.04 / Subject to change

http://www.maxonmotor.com/
http://www.ixxat.de/english/kontakt/distrib.shtml
http://www.beckhoff.de/
http://www.siemens.com/index.jsp
http://www.helmholz.de/
http://www.vipa.de/

maxon motor control
EPOS Application Note: CANopen Basic Information Version 1.0

Step 2:
CAN Bus Wiring

The two-wire bus line has to be terminated at both ends by a resistor of about 120Ω. The two-
wires should be twisted and may be shielded depending on EMC requirements.

Connection EPOS – CAN bus line CiA DS-102

EPOS 24/1
280937, 280938, 302267

EPOS 24/1, 24/5, 70/10
302287, 275512, 300583

CAN 9 pin D-Sub (DIN41652)
on PLC or PC CAN interface

Connector J2 pin 1 “CAN high” Pin 1 “CAN high” Pin 7 “CAN_H” high bus line
Connector J2 pin 2 “CAN low” Pin 2 “CAN low” Pin 2 “CAN_L” low bus line
Connector J2 pin 5 “CAN GND” Pin 3 “CAN GND” Pin 3 “CAN_GND” Ground
CAN shield connect to taphole
on EPOS 24/1 housing

Pin 4 “CAN shield” Pin 5 “CAN_Shield”
Cable Shield

 female male

Figure 2: Connector (J2) Figure 3: CAN connector
Molex Micro-Fit 3.0TM 4
poles (430-25-0400)

Figure 4: Pin assignment for
female and male D-Sub
connectors

Step 3:
CAN Node ID

For all devices a unique node ID has to be selected.

EPOS 24/1
The CAN-ID (= Node ID) is set at DIP-switch 1 ... 4.
All addresses can be coded from 1 ... 15 using the binary code.

Switch Binary code Value
1 20 1
2 21 2
3 22 4
4 23 8

 Figure 5: DIP-Switch EPOS 24/1

EPOS 24/5 and EPOS 70/10
The CAN-ID (= Node ID) is set at DIP-switch 1 ... 7.
All addresses can be coded from 1 ... 127 using the binary code.

Switch Binary code Value
1 20 1
2 21 2
3 22 4
4 23 8
5 24 16
6 25 32
7 26 64

 Figure 6: DIP-Switch EPOS 24/5 and 70/10

EPOS Application Note: CANopen Basic Information Page 3/9 Edition: 14.09.04 / Subject to change

maxon motor control
EPOS Application Note: CANopen Basic Information Version 1.0

Step 4:
CAN
Communication

For the EPOS following CAN bit rates are available:

Object ‘CAN Bitrate’
(Index 0x2001 SubIndex 0x00)

Bit rate Max. line length
according to CiA DS-102

0 1 MBit/s 25 m
1 800 kBit/s 50 m
2 500 kBit/s 100 m
3 250 kBit/s 250 m
4 125 kBit/s 500 m
5 50 kBit/s 1000 m
6 20 kBit/s 2500 m

All devices on the CAN bus have to use the same bit rate! The maximum bit rate of a
CANopen bus depends on the line length. Use the EPOS Graphical User Interface to
configure bit rate writing the object ‘CAN Bitrate’ (Index 0x2001, SubIndex 0x00).

Step 5:
Activate
Changes

Activate the changes by saving and resetting the EPOS. Execute the menu item ‘Save All
Parameters’ in the menu ‘Parameter’ of the EPOS Graphical User Interface GUI.

Step 6:
Communication
Test

Use a CAN monitor program (supported by manufacturer of PC or PLC CAN interface) to
check the current wiring and EPOS configuration.

1. Reset all EPOS devices on the bus.
2. At power on the EPOS will send a boot up message.
3. Check that all connected devices send a boot up message (otherwise the EPOS

produces a “CAN in Error Passive Mode”.
4. Boot up message:

COB-ID = 0x700 + Node ID
Data [0] = 0x00

For example the figure below shows the incoming message on CAN bus (EPOS node ID = 1)
by a CAN monitor from IXXAT.

Figure 7: Example boot up message of node 1

EPOS Application Note: CANopen Basic Information Page 4/9 Edition: 14.09.04 / Subject to change

maxon motor control
EPOS Application Note: CANopen Basic Information Version 1.0

SDO Communication

A Service Data Object (SDO) reads from entries or
writes to entries of the Object Dictionary. The SDO
transport protocol allows transmitting objects of any
size. The SDO communication can be used to
configure the object of the EPOS.

Two different transfer types are supported. The
normal transfer is used for reading or writing objects
with a size higher than 4 bytes. This transfer type
uses a segmented SDO protocol. This means the
transfer is split into different SDO segments (CAN

frames). For objects of 4 bytes or less a non-segmented SDO protocol can be used. This transfer is called
expedited transfer.

Figure 8: SDO communication

Nearly all objects of the EPOS object dictionary can be read and written using the non-segmented SDO protocol
(expedited transfer). Only the data recorder buffer needs to be read using the segmented SDO protocol. For this
reason only the non-segmented SDO protocol is explained in this application note. For a description of the
segmented protocol (Normal Transfer Type) have a look at the CANopen specification (CiA Draft Standard 301).

Expedited SDO Protocol

Reading Object
Client =>
Server COB-ID Data

[Byte 0]
Data

[Byte 1]
Data

[Byte 2]
Data

[Byte 3]
Data

[Byte 4]
Data

[Byte 5]
Data

[Byte 6]
Data

[Byte 7]
 0x600 +

Node ID Index
LowByte

Index
HighByte

Sub-
Index Reserved

 Bit 7 Bit 6 Bit 5 Bit 4 Bit 3 Bit 2 Bit 1 Bit 0
 0 1 0 X X X X X

Server =>
Client COB-ID Data

[Byte 0]
Data

[Byte 1]
Data

[Byte 2]
Data

[Byte 3]
Data

[Byte 4]
Data

[Byte 5]
Data

[Byte 6]
Data

[Byte 7]
 0x580 +

Node ID Index
LowByte

Index
HighByte

Sub-
Index

Object
Byte 0

Object
Byte 1

Object
Byte 2

Object
Byte 3

 Bit 7 Bit 6 Bit 5 Bit 4 Bit 3 Bit 2 Bit 1 Bit 0
 0 1 0 X n e s

Figure 9: SDO Upload Protocol (Expedited Transfer Type)

Writing Object
Client =>
Server COB-ID Data

[Byte 0]
Data

[Byte 1]
Data

[Byte 2]
Data

[Byte 3]
Data

[Byte 4]
Data

[Byte 5]
Data

[Byte 6]
Data

[Byte 7]
 0x600 +

Node ID Index
LowByte

Index
HighByte

Sub-
Index

Object
Byte 0

Object
Byte 1

Object
Byte 2

Object
Byte 3

 Bit 7 Bit 6 Bit 5 Bit 4 Bit 3 Bit 2 Bit 1 Bit 0
 0 0 1 X n e s

Server =>
Client COB-ID Data

[Byte 0]
Data

[Byte 1]
Data

[Byte 2]
Data

[Byte 3]
Data

[Byte 4]
Data

[Byte 5]
Data

[Byte 6]
Data

[Byte 7]
 0x580 +

Node ID Index
LowByte

Index
HighByte

Sub-
Index Reserved

 Bit 7 Bit 6 Bit 5 Bit 4 Bit 3 Bit 2 Bit 1 Bit 0
 0 1 1 X X X X X

Figure 10: SDO Download Protocol (Expedited Transfer Type)

EPOS Application Note: CANopen Basic Information Page 5/9 Edition: 14.09.04 / Subject to change

maxon motor control
EPOS Application Note: CANopen Basic Information Version 1.0

Abort SDO Protocol (in case of error)
Server =>
Client COB-ID Data

[Byte 0]
Data

[Byte 1]
Data

[Byte 2]
Data

[Byte 3]
Data

[Byte 4]
Data

[Byte 5]
Data

[Byte 6]
Data

[Byte 7]
 0x580 +

Node ID Index
LowByte

Index
HighByte

Sub-
Index Abort Code

 Bit 7 Bit 6 Bit 5 Bit 4 Bit 3 Bit 2 Bit 1 Bit 0
 1 1 0 X X X X X

Figure 11: Abort SDO Transfer Protocol

Note: The Abort Codes are described in the document 'EPOS Firmware Specification' in the section

'Communication Errors (Abort Codes)'

Legend: ccs: client command specifier (Bit 7 ... 5)

scs: server command specifier (Bit 7 ... 5)
X: not used; always 0
n: Only valid if e = 1 and s = 1, otherwise 0. If valid it indicates the number of bytes in
 Data [Byte 4 - 7] that do not contain data. Bytes [8 - n, 7] do not contain segment data.
e: transfer type (0: normal transfer; 1: expedited transfer)
s: size indicator (0: data set size is not indicated; 1: data set size is indicated)

 Overview of important command specifier:

Length Sending Data [Byte 0] Receiving Data [Byte 0]
1 Byte 40 4F
2 Byte 40 4B

Reading Object

4 Byte 40 43

Length Sending Data [Byte 0] Receiving Data [Byte 0]
1 Byte 2F 60
2 Byte 2B 60

Writing Object

4 Byte 23 60

SDO Communication Examples

First Example: Read ‘Current Regulator P-Gain’ (Index 0x60F6 SubIndex 0x01) from node 1

CANopen Sending SDO Frame CANopen Receiving SDO Frame
COB-ID 0x601 0x600 + Node ID COB-ID 0x581 0x580 + Node ID
Data[0] 0x40 ccs = 2 Data[0] 0x4B scs = 2, n = 2, e = 1, s = 1
Data[1] 0xF6 Index LowByte Data[1] 0xF6 Index LowByte
Data[2] 0x60 Index HighByte Data[2] 0x60 Index HighByte
Data[3] 0x01 SubIndex Data[3] 0x01 SubIndex
Data[4] 0x00 reserved Data[4] 0x90 P-Gain LowByte
Data[5] 0x00 reserved Data[5] 0x01 P-Gain HighByte
Data[6] 0x00 reserved Data[6] 0x00 reserved
Data[7] 0x00 reserved Data[7] 0x00 reserved

 Current Regulator P-Gain: 0x00000190 = 400

Second Example: Write ‘Current Regulator P-Gain’ (Index 0x60F6 SubIndex 0x01) to node 1

CANopen Sending SDO Frame CANopen Receiving SDO Frame
COB-ID 0x601 0x600 + Node ID COB-ID 0x581 0x580 + Node ID
Data[0] 0x2B ccs = 1, n = 2, e = 1, s = 1 Data[0] 0x60 scs = 3
Data[1] 0xF6 Index LowByte Data[1] 0xF6 Index LowByte
Data[2] 0x60 Index HighByte Data[2] 0x60 Index HighByte
Data[3] 0x01 SubIndex Data[3] 0x01 SubIndex
Data[4] 0x12 P-Gain LowByte Data[4] 0x00 reserved
Data[5] 0x34 P-Gain HighByte Data[5] 0x00 reserved
Data[6] 0x00 reserved Data[6] 0x00 reserved
Data[7] 0x00 reserved Data[7] 0x00 reserved

EPOS Application Note: CANopen Basic Information Page 6/9 Edition: 14.09.04 / Subject to change

maxon motor control
EPOS Application Note: CANopen Basic Information Version 1.0

PDO Communication

Process Data Objects (PDOs) are used for fast data transmission (real-time data) with a high priority. PDOs are
unconfirmed services containing no protocol overhead. Consequently, they represent an extremely fast and
flexible method of transmitting data from one node to any number of other nodes. PDOs can contain a maximum
of 8 data bytes that can be specifically compiled and confirmed by the user to suit his requirements. Each PDO
has a unique identifier and is transmitted by only one node, but it can be received by more than one
(producer/consumer communication).

PDO transmissions

PDO transmissions may be driven by remote requests and by
the Sync message received:

- Remotely requested: Another device may initiate the
transmission of an asynchronous PDO by sending a remote
transmission request (remote frame).

- Synchronous transmission: In order to initiate simultaneous
sampling of input values of all nodes, a periodically transmitted
Sync message is required. Synchronous transmission of
PDOs takes place in cyclic and acyclic transmission mode.
Cyclic transmission means that the node waits for the Sync
message, after which it sends its measured values. Its PDO
transmission type number (1 to 240) indicates the Sync rate it
listens to (how many Sync messages the node waits before
the next transmission of its values). The EPOS supports only
Sync rates of 1.
Acyclically transmitted synchronous PDOs are triggered by a

defined application-specific event. The node transmits its values with the next Sync message but will not transmit
again until another application-specific event has occurred.

Figure 12: PDO transmissions

PDO mapping
The default mapping of application objects
as well as the supported transmission
mode is described in the Object Dictionary
for each PDO. PDO identifiers should
have high priority to guarantee a short
response time. PDO transmission is not
confirmed. The PDO mapping defines
which application objects are transmitted
within a PDO. It describes the sequence
and length of the mapped application
objects. A device that supports variable
mapping of PDOs must support this
during the pre-operational state. If
dynamic mapping during operational state
is supported, the SDO Client is
responsible for data consistency.

Figure 13: PDO mapping

EPOS Application Note: CANopen Basic Information Page 7/9 Edition: 14.09.04 / Subject to change

maxon motor control
EPOS Application Note: CANopen Basic Information Version 1.0

PDO Configuration

The following section explains step by step how the configuration has to be implemented for PDOs. For all
changes in the 'Object Dictionary' described below, use the EPOS Graphical User Interface GUI. For each step
an example is noted for 'Receive PDO 1' and 'Node 1'.

Step 1:
Configure
COB-ID

The default value of the COB-ID depends on the node ID (Default COB-ID = PDO-Offset +
Node ID).

Otherwise the COB-ID can be set in a defined range.

Below a table for all default COB-IDs and ranges of COB-IDs:

Object Default
COB-ID Node 1

Range
COB-IDs

TxPDO 1 0x181 0x181 – 0x1FF
RxPDO 1 0x201 0x201 – 0x27F
TxPDO 2 0x281 0x281 – 0x2FF
RxPDO 2 0x301 0x301 – 0x37F
TxPDO 3 0x381 0x381 – 0x3FF
RxPDO 3 0x401 0x401 – 0x47F

All changed COB-IDs can be reset by 'Restore Default PDO COB-IDs'.

Example: ‘COB-ID used by RxPDO 1’ (Index 0x1400, SubIndex 0x00):

Default COB-ID RxPDO 1 = 0x200 + Node ID = 0x201
In Range COB-ID RxPDO 1 = 0x233

Step 2:
Set
Transmission
Type

Type 0x01: Synchronous Transmission
The data of a synchronous PDO is passed to the application after the occurrence of the
SYNC.

Type 0xFF: Asynchronous Transmission
The data of an asynchronous PDO is passed directly to the application.

Example: 'Transmission Type' (Index 0x1400, SubIndex 0x02)

Value = 0x01 or 0xFF

Step 3:
Number of
Mapped
Application
Objects

Disable the PDO by wiring zero to the object 'Number of Mapped Application Objects in …'

Example: 'Number of Mapped Application Objects in RxPDO 1' (Index 0x1600, SubIndex

0x00)

Value = 0x00

EPOS Application Note: CANopen Basic Information Page 8/9 Edition: 14.09.04 / Subject to change

maxon motor control
EPOS Application Note: CANopen Basic Information Version 1.0

Set the value from an object.

Step 4:
1st - 4th
Mapped Object Receive PDO 1 and PDO 2 mapping objects

1st, 2nd
Byte

3rd Byte 4th Byte

Object
Index

Object
SubIndex

Object
Length in bit

Object
Name

Object
Value

0x6040 0x00 0x10 (16) Controlword 0x60400010
0x607A 0x00 0x20 (32) Target position 0x607A0020
0x60FF 0x00 0x20 (32) Target velocity 0x60FF0020
0x2078 0x01 0x10 (16) Digital Output Functionality State 0x20780110
0x2030 0x00 0x10 (16) Current mode setting value 0x20300010
0x206B 0x00 0x20 (32) Velocity mode setting value 0x206B0020
0x2062 0x00 0x20 (32) Position mode setting value 0x20620020

Receive PDO 3 mapping objects
The mapping of this process data objects are static and can not be changed.

0x6040 0x00 0x10 (16) Controlword 0x60400010
0x6060 0x00 0x08 (8) Modes of operation 0x60600008

Transmit PDO 1 and PDO 2 mapping objects

1st, 2nd
Byte

3rd Byte 4th Byte

Object
Index

Object
SubIndex

Object
Length in bit

Object
Name

Object
Value

0x6041 0x00 0x10 (16) Statusword 0x60410010
0x6064 0x00 0x20 (32) Position actual value 0x60640020
0x606C 0x00 0x20 (32) Velocity actual value 0x606C0020
0x2071 0x01 0x10 (16) Digital Input Functionalities State 0x20710110
0x6078 0x00 0x10 (16) Current actual value 0x60780010
0x207C 0x01 0x10 (16) Analog Input 1 0x207C0110
0x207C 0x02 0x10 (16) Analog Input 2 0x207C0210
0x2020 0x00 0x10 (16) Encoder counter 0x20200010
0x2021 0x00 0x10 (16) Encoder counter at index pulse 0x20210010

Transmitting PDO 3 mapping objects
The mapping of this process data objects are static and can not be changed.

0x6041 0x00 0x10 (16) Statusword 0x60410010
0x6061 0x00 0x08 (8) Modes of operation display 0x60610008

Example: '1st - 4th mapped Object in RxPDO 1' (Index 0x1600, SubIndex 0x01 - 0x04)

Step 5:
Number of
Mapped
Application
Objects

Enable the PDO by writing the value of the number of objects in 'Number of Mapped
Application Objects …'.
 PDO 1 and 2: Range 0 … 4
 PDO 3: Range 0 … 2

Example: ‘Number of Mapped Application Objects in RxPDO 1’ (Index 0x1600, SubIndex

0x00)

Step 6:
Activate
Changes

Activate the changes by saving and resetting the EPOS. Execute the menu item ‘Save All
Parameters’ in the menu ‘Parameter’ of the EPOS Graphical User Interface GUI.

EPOS Application Note: CANopen Basic Information Page 9/9 Edition: 14.09.04 / Subject to change

